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COGENT

Programming Manual
by

John C. Reynolds

CHAPTER I
BASIC CONCEPTS AND MAJOR FEATURES OF COGENT

A. Introduction

The COGENT (COmpiler and GENeralized Translator) program-
ming system is a compiler whose input language is designed for the descrip-
tion of symbolic or linguistic manipulation algorithms. Although the system
is intended primarily for use as a compiler compiler, i.e., a compiler that
compiles other compilers, it is also applicable to such problem areas as
algebraic manipulation, mechanical theorem-proving, and heuristic

programming.

In designing the system, the major objective was to achieve both the
programming conciseness of a syntax-directed compiler system and the full
generality of a recursive list-processing program. A second objective was
to avoid any interpretive operations in the programs compiled by COGENT,
in order to maximize the running speed of these programs. In general, the
design of the system has drawn heavily upon the earlier work of several
authors, particularly the syntax-directed compiler methods of E. T. Irons, 1
the Compiler Compiler of Brooker and Morris,(z) and the LISP list-
processing system of J. McCarthy.,(3)

An initial version of the COGENT system has been written for the
Control Data 3600 computer. This manual is intended primarily to describe
the input language for this system; operating procedures and details of the
specific machine implementation are not discussed.

The fact that COGENT may be used to compile other compilers leads
to some confusing terminology which must be clarified. The input language
of the system is called the COGENT language, and a program written in
this language is called a COGENT program. This program will in turn des-
cribe the manipulation of one or more object languages; when the program
is a compiler, the object languages will be the input and output languages of
the compiler. In general, the object languages are arbitrary languages
whose characteristics are specified by part of the COGENT program, so
that the COGENT language itself is a metalanguage which describes the
object languages.




The COGENT system is a compiler which runs on the Control
Data 3600 and translates COGENT language into 3600 assembly language.
When the system is used as a compiler compiler, its output is a compiler
which must run on the 3600 but which may translate an arbitrary input
language into an arbitrary output language, e.g., numeric or symbolic code
for any machine.

Fundamentally, a program compiled by COGENT is a list-processing
program in which the list structures represent phrases of object language.
The correspondence between the strings of object language which appear ex-
ternally on input-output media and the list structures which represent these
strings within the computer is determined by the syntax of the object lan-
guages. Thus the COGENT language itself contains two types of structures:
productions, which specify the syntax of the object languages; and generator

definitions, which specify list-processing procedures called generators.
The format of the generator definitions is designed to let the programmer
think directly in terms of the phrases of language that are being manipu-
lated, rather than the list structures that actually represent these phrases.

The main routine of a COGENT program is always a syntax analyzer
which is compiled from the productions describing the input object language.
This analyzer reads character strings from the input medium and converts
them into list structures. At certain points in this process, the analyzer
will call a generator to operate on the currently recognized sublist; the re-
sult of this generator then replaces the current sublist in the list being con-
structed. In addition to being called by the syntax analyzer, generators may
call each other and may call themselves recursively. Ultimately, primitive
(built-in) output generators are called to decompose the list structures back
into character strings and write these strings on the output medium.

B. Productions

Productions are the structures in the COGENT language that specify
the syntax or grammar of the object language and thereby determine the
corresporidence between strings of object language and list structures.
More specifically, productions serve three purposes:

1. To control the compilation of the syntax analyzer.
2. To control the compilation of tables that are used by various

primitive generators to decompose list structures back into character
strings. This process is called character scanning.

3. To specify the conversion of quoted phrases of object language,
which appear as constants in generator definitions, into the list structures
these phrases represent.

Productions specify syntax in the following manner: The phrases
of an object language may be grouped into phrase classes, each of which

is a set of phrases with the same syntactic behavior. Each phrase class

is denoted by a phrase class name, which is a parenthesized alphanumeric
name such as (LETTER) or (FACTOR). Then a production is a formula
which defines one way (out of perhaps several alternatives) in which a phrase

of a particular class may be constructed by juxtaposing characters and
smaller phrases.

In format, the production consists of the name of the phrase class
being defined (called the resultant of the production), an equal sign, a string
of zero or more characters and/or phrase class names showing the con-
struction of the phrase (called the construction string of the production),

and a period. (Productions are thus written in a variant of the Backus nota-
tion(4) which avoids the use of special metalinguistic characters.)

As an example, consider a language consisting of algebraic poly-
nomials, without numerical coefficients but with parentheses allowed. We
will use strings of the letters A, B, C, D, and E to name the variables. To
describe the syntax of the language, we first define the phrase class
(LETTER), which includes the characters A, B, C, D, and E, by the
productions

(LETTER) = A. (LETTER) =B. (LETTER) = C, (1-3)

(LETTER) = D. (LETTER) = E. (4-5)

1
1

Now the phrase class (VARIABLE) will consist of letter strings of
arbitrary length. This may be specified by the productions

(STRING) = (LETTER). (6)
(STRING) = (STRING)(LETTER). (7)
(VARIABLE) = (STRING). (8)

Notice that the second of these productions is recursive; that is, it specifies
that a string may consist of a string followed by a letter. This feature al-
lows us to define strings of arbitrary length by using a finite number of
productions; production (6) defines strings of one letter, while production (7)
defines strings of two letters in terms of strings of one, strings of three in
terms of strings of two, etc. Also notice the relation of strings and varia-
bles; all variables are strings but not all strings are variables. (In particu-
lar, strings that are subphrases of longer strings are not variables.)

Several productions used to define the same phrase class may be
combined into a compound production, which has several construction strings
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on the right, separated by commas. Such a compound production is simply
an abbreviation for a set of simple productions which link the same resultant
with each construction string. Thus we may write the productions we have
given more compactly as

(LETTER) = A,B,C,D,E. (1-5)
(STRING) = (LETTER),(STRING)(LETTER). (6-7)
(VARIABLE) = (STRING). (8)

In discussing the meaning of COGENT programs, we will always assume that
compound productions have been replaced by the equivalent simple
productions.

We now come to the nontrivial phrase classes such as (FACTOR),
(TERM), etc. A factor may simply be a variable, so that we have

(FACTOR) = (VARIABLE). (9)

On the other hand, a factor may be composed of a polynomial surrounded by
parentheses. However, when we try to express this rule as a production, a
problem arises. We would expect to write

(FACTOR) = ((POLYNOMIAL)).

But this is ambiguous, since the outer parentheses are meant to represent
characters of the object language, while the inner parentheses are meant to
indicate a phrase class name.

To overcome this ambiguity, we extend our specification of the format
of productions, and specify that ambiguous characters will be enclosed in
parentheses when they represent object characters. Thus we will write
"(()" to represent "(" and "())" to represent ")", so that the production
becomes

(FACTOR) = (()(POLYNOMIAL)()). (10)

In addition to "(" and ")", the object characters "," and "." must be paren-
thesized to avoid ambiguities in productions.

The remaining productions are straightforward. A term may be
either a single factor, or a simpler term followed by an asterisk (multipli-
cation sign) and a factor:

(TERM) = (FACTOR). (11)

(TERM) = (TERM)x(FACTOR). (12)

These two productions use recursion to define arbitrarily long terms in the
same manner as it was used for strings. Polynomials are defined in a simi-
lar manner, except that the terms may be separated by either plus or minus
signs, and a plus or minus sign may optionally precede the first term:

(POLYNOMIAL) = (TERM), +(TERM), -(TERM). (13-15)
(POLYNOMIAL) = (POLYNOMIAL)+(TERM). (16)
(POLYNOMIAL) = (POLYNOMIAL)-(TERM).. (17)

This definition of polynomials is indirectly recursive, since a polynomial
may be part of a factor, which may be part of a term, which may be part of
a longer polynomial. This use of recursion allows parentheses to be nested
to an arbitrary depth. (We will continue to use these illustrative productions
describing polynomials in examples throughout this manual.)

C. Construction Trees

The set of productions that describes the syntax of an object language

is essentially a set of rules for constructing all legal phrases of the language.

For example, to construct a polynomial according to the productions we have
given, we first use any one of the productions whose resultant is the phrase
class (POLYNOMIAL). This production gives a sequence of phrase classes
and characters which forms a legitimate polynomial. We then replace each
phrase class name in this sequence by a subsequence which is determined
by any one of the productions for that class. This process is repeated until
only characters remain; the final sequence is then a phrase of the class
(POLYNOMIAL).

A construction of this sort is conveniently represented by a tree
structure in which terminal nodes represent characters and nontermainal
nodes represent phrases. The nonterminal node for a particular phrase is
connected to the subnodes for the characters and subphrases which replace
the phrase; thus the relationship between a nonterminal node and its sub-
nodes always corresponds to a particular production. Such a construction
tree is shown in Figure 1 for the polynomial "-(A+B)*DC", according to the
productions given above.

Given a set of productions describing an object language, a string
of characters is said to be a phrase of a particular class if a construction
tree exists which is headed by the name of the phrase class and terminates
in the characters of the string. If more than one such construction tree
exists, the phrase is said to be ambiguous.

Several further syntactical concepts may be defined in terms of the
construction tree. Given a phrase and its construction tree, the production

11
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that relates the main node of the tree to its subnodes is said to partition
the phrase. Given any nonterminal node, other than the main node, the
sequence of characters that terminate the subtree headed by this node is
called a subphrase of the given phrase. If the subtree is headed by an
immediate subnode of the main node, the corresponding subphrase is an
immediate subphrase. Thus the polynomial "_(A+B)*DC" is partitioned
by the production (POLYNOMIAL) = -(TERM), and its only immediate
subphrase is the term "(A+B)*DC". (A more rigorous definition of these
concepts is given in Chapter II, pp. 45-48.)

List structures are composed of elements, which are ordered sets
of components. Each element is denoted by a list name. (Within the com-
puter, an element is normally a block of storage divided into subfields for
the components, and the name of the element is the address of this block.)
In general, a component may be either an item of data, such as a number
or a BCD string, or else the name of an element. We will define a variety
of types of elements; the type of an element specifies the nature of its
components.

The list structure denoted by a name n is defined to consist of:
(POLYNOMIAL)

/ \ 1. The element denoted by n. This element is called the head

element of the structure.

\ 2. The list structures denoted by each name that is a component
(TERM] * (FACTOR) of the head element. These are the sublists of the structure.

I We will frequently speak of a constant or variable having a list structure

(FACTOR) (VARIABLE) or element as its value. More precisely, the value is actually the name of
/ I \ l the structure or element.
( (POLYNOMIAL) ) (STRING) It is important to distinguish between similar and identical list
/ structures. Two list structures are similar if either: ‘
(POLYNOMIAL) + (TERM) (STRING) (LETTER) 1. They have the same name, or
(TERM) (FACTOR) (LETTER) C 2. The head elements of the structures have the same type and
number of components, and corresponding components are either identical,
(FACTOR) (VARIABLE) b if they are data items, or denote similar sublists, if they are names.
The two structures are identical if and only if case 1 holds.
(VARIABLE) (STRING)
To represent list structures pictorially, we will use a collection of
(STRING) (LETTER) boxes representing elements, which will be subdivided into boxes for the
components. When a component is a name, an arrow will be drawn from
the component box to the box for the named element; the component is then
(LETTER) B said to point to the element. The type of the element will sometimes be
indicated by a flag in the upper left-hand corner of the element box.
A
We may now describe the relation between list structures and phrases
Fig. 1. Construction Tree for the Polynomial "_-(A+B)*DC" of object language. The list structure that represents an object phrase is
completely equivalent to the construction tree for the phrase, but is consid-
D. List Structures ' erably more compact. A construction tree is highly redundant, since it con-
tains information that is also given by the productions themselves. Actually
Essentially, construction trees are the mechanism by which phrases it is only necessary to indicate for each nonterminal node of the tree the
of object language are mapped into list structures; i.e., the list structure particular production that relates this node to its subnodes. The production

representing a phrase is a machine representation of its construction tree.
Before specifying this mapping in detail, we must first define the general
concepts of list structures as used in COGENT.
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itself then specifies both the phrase class name of the node and the phrase
class names and object characters of the subnodes.

To enable list structures to refer to productions, each (noncompound)
production, when read by the COGENT system, is assigned a unique pro-
duction code number. (The assignment of these code numbers is an internal

process in the system and is normally of no consequence to the programmer.)
When code numbers are given for the productions, the construction tree of a
phrase may be converted into a list structure by replacing each nonterminal
node of the tree by a list element whose first component is the code number
of the production that relates the node to its subnodes, and whose remaining
components are the names of the list elements that replace the nonterminal
subnodes. Terminal nodes are simply discarded, since the corresponding
characters are determined by the productions themselves.

The list structure shown in Figure 2 is derived from the construction
tree in Figure 1 and represents the polynomial "-(A+B)*DC". The code

Fig. 2. List Structure Representing the
Polynomial "-(A+B)*DC"

numbers used in Figure 2 correspond to the numbers given in the text to
the right of each production.

The relation between a list structure and the phrase it represents
may be described directly, without the intermediary construction tree, as
follows: The first component of the head element of the list structure is
the code number of the production that partitions the phrase, i.e., whose
resultant gives the phrase class name of the phrase and whose construction
string gives the decomposition of the phrase into characters and immediate
subphrases. The remaining components of the head element correspond,
in order, to the phrase class names in the construction string of this pro-
duction, and name sublists which represent the corresponding immediate
subphrases of the original phrase.

The list elements we have introduced always consist of a production
code number followed by zero or more names. This type of element is
called normal to distinguish it from other element types which will be in-
troduced later.

E. The Syntax Analyzer

The main routine of a COGENT program is always a syntax analyzer
which is compiled from the productions describing the input object language.
This analyzer reads a character string from the input medium and produces
the corresponding list structure. The list structure is always produced in
a standard order, in which the sublists of any element are constructed in
order from left to right, and the element itself is constructed immediately
after the last sublist. In effect, the analyzer moves up each branch of the
list structure, up to but not including the first element with further branches
to the right. When an element with further branches is encountered, the
analyzer jumps to the bottom of the next branch on the right. (In terms of
the input character string, the analyzer recognizes phrases on the same
level in order from left to right, and recognizes a phrase immediately after
its last subphrase.) The circled numbers in Figure 2 indicate the order in
which the list structute would be produced by the analyzer.

At certain points in its operation, the analyzer interrupts the con-
struction of the list structure and calls in a generator to process the sub-
lists of the current list element. When the generator returns control to
the analyzer, the result of the generator replaces the current list element,
and the construction of list structure continues.

This calling of generators is programmed by labeling certain pro-
ductions with generator names. A label consists of a generator name, which
is an alphanumeric string, followed by a slash. Thus for example, two of
the productions describing polynomials might be labeled:

15
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MULTCOMP/ (TERM) = (TERM)x(FACTOR). (121)
ADDCOMP/ (POLYNOMIAL) = (POLYNOMIAL) + (TERM). (16")

If compound productions are labeled, the label applies to all of the corres-
ponding simple productions.

When the analyzer is about to construct a list element which repre-
sents a production with a label, it calls the generator indicated by the label
and gives this generator as input arguments the sublists of the list element
that would otherwise be constructed., When the generator returns control,
the result of the generator replaces the list element that would have been
constructed, and the analysis continues. Thus at a higher stage of the
analysis the generator result may be passed on to other generators for
further processing.

For example, suppose that the input string "-(A+B)*DC" is read by a
syntax analyzer which was compiled from the productions we have given, in-
cluding the labeled versions (12') and (16'). When the analyzer is about to
recognize the list element beginning with code number 16 (see Figure 2), it
will call the generator ADDCOMP and give it the input arguments shown in
Figure 3a, which represent the (POLYNOMIAL) "A" and the (TERM) "B",
When ADDCOMP returns, its result replaces the list element beginning
with 16, and the analysis continues. Later, when the analyzer reaches the
element beginning with 12, the generator MULTCOMP is called and given
the arguments shown in Figure 3b, which represent the (TERM) "( ... )" and
the (FACTOR) "DC", where the dots indicate the substituted result of
ADDCOMP. When MULTCOMP returns, its result replaces the element
beginning with 12, and the analysis again continues. The final result is
shown in Figure 3c.

This general approach, of performing translation by means of gen-
erators which are associated with productions and which are called in at
each syntactic level where the production is used, was developed by
E. T. Irons,(l) and called by him "Syntax-directed Compilation." It is
especially useful for programming simple translation processes in which
the translation of each phrase may be described in terms of the translation
of its subphrases; in such situations, the generators may be simple substi-
tution mechanisms. However, in more complex processes, in which the
translation of a phrase may depend upon contextual material outside the
phrase itself, the syntax-directed approach is less helpful. In these situa-
tions, the analyzer must convert large segments of input into list structure
before the translation can begin, and the generator that accepts this struc-
ture must use facilities such as recursion and conditional list analysis to
perform the translation.

(a) Input Arguments of ADDCOMP:

First Argument Second Argument

(b) Input Arguments of MULTCOMP:

First Argument

Result of
ADDCOMP

(c) Final Result of the Analysis:

15 |

Result of
MULTCOMP

Fig. 3. List Structures Communicated between
the Syntax Analyzer and Generators

17
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F. Generator Definitions: Constants

We have seen that a generator is a subroutine for manipulating list
structures, which is specified in the COGENT language by a generator
definition. The generator definition contains a sequence of statements
which compute and assign values to variables, perform tests, and transfer
control, much as in a FORTRAN subroutine or an ALGOL procedure.

More precisely, since a generator may have any number of input arguments
but only a single result, it may be characterized as a function subroutine.

The essential peculiarity of generators is the nature of the values
that their variables take on. These values are usually not numbers, but
rather the names of list structures representing phrases of object language.
Thus the most distinctive feature of generator definitions is the format of
constants, which must denote such list structures.

Since COGENT is designed to let the programmer think directly in
terms of the phrases of object language which are to be manipulated, the
ideal approach would be to allow a constant to consist merely of the desired
object phrase enclosed in some type of quotation marks, and to have the
COGENT compiler convert this quoted phrase into the corresponding list
structure according to the appropriate productions. But to perform this
conversion, the compiler must know not only the characters of the object
phrase, but also the class name of the phrase. Thus a constant must give
both a phrase class name and a string of object characters. The exact for-
mat is: a left parenthesis, the phrase class name, a slash, the object string
being quoted, and a closing right parenthesis. Just as in productions, the
object characters "(", ")", ",", and "." must be enclosed in parentheses
when appearing in the quoted string. Thus, for example, to denote the ob-
ject phrase "-(A+B)*DC" one would write the constant

(POLYNOMIAL/-(()A+B())*DC)

The actual list structure denoted by this constant is the structure shown in
Figure 2.

Now the basic operations used in linguistic manipulation are the
analysis of phrases into subphrases, and the synthesis of phrases from sub-
phrases. To facilitate these operations, it is extremely useful to extend
the set of constants used in the COGENT language (and therefore the set of
values that variables may assume) to include parametric phrases, i.e.,
phrases in which one or more subphrases, called parameters, are left un-
specified. We will see that these parametric phrases play a central role in
COGENT programs as templates which specify synthesis and analysis
operations.,

Parametric phrases are denoted by constants in which one or more
parameters appear in the quoted object string. These parameters are in-
dicated by the appropriate phrase class name, followed by a slash and a
number called the parameter index, and enclosed in parentheses. For ex-
ample, the constant

(TERM/(FACTOR/1)%(FACTOR/4)*(FACTOR/3))

denotes a term containing three parametric factors, with indices 1, 4, and
3. It is possible to omit the index and the preceding slash within a parame-
ter; in this case, an implied index is assumed which is the order of appear-
ance of the parameter in the constant (from left to right). Thus,

(TERM/(FACTOR)*(FACTOR/4)*(FACTOR))
is equivalent to the constant given above.

Parametric constants are converted into list structures in a manner
similar to that used for conventional constants. A parameter containing
the name of a particular phrase class behaves syntactically as a phrase of
that class, but it is converted into a special type of list element called a
parameter element. The parameter element contains a single component

giving the index of the parameter. (We will indicate a parameter element
in diagrams of list structures by the flag "P".) Thelist structure corres-
ponding to either of the constants given above is shown in Figure 4.

Fig. 4

List Structure Denoted by the Parametric Constant
(TERM/(FACTOR/1)x(FACTOR /4)x(FACTOR/3))

G. Expressions and Assignment Statements

In generator definitions, variables are represented by alphanumeric
names, as in most programming languages. Beginning with constants and
variables, expressions may be built up by using a functional notation, in
which the function names indicate the calling of other generators. Thus, an
expression may be a constant, a variable, or a compound expression of
the form

generator-name ( expression, ... , expression )
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Such a compound expression is evaluated by first evaluating the
subexpressions, then calling the named generator with the subexpression
values as input arguments, and finally taking the result of the generator
as the value of the expression. For example,

ADDCOMP(MULTCOMP(X, (FACTOR/DC)), Y)

would be evaluated by calling the generator MULTCOMP with the values of X
and the constant (FACTOR/DC) as input arguments, then calling the genera-
tor ADDCOMP with the result of MULTCOMP and the value of Y as input
arguments, and finally taking the result of ADDCOMP as the value of the en-
tire expression.

The main part of a generator definition is a sequence of statements,
marked off by periods. These statements are divided into two categories:
assignment statements, which alter the values of variables, and control

statements, which perform tests and determine the order in which state-

ments are executed.

The simplest type of assignment statement is the direct assignment
statement, which consists of a variable name, equal sign, expression, and
period. For example,

X

(FACTOR/DC).

X

ADDCOMP(Y, (TERM/AB*DC)).

A direct assignment statement causes the right-hand expression to be eval-
uated and its value to be assigned to the variable named on the left. A vari-
ant of the direct assignment statement consists simply of a compound
expression followed by a period. For example,

OUTINST(X).

This variant causes the compound expression to be evaluated, but the re-
sulting value is ignored. It is normally used to call a generator which has
a meaningless result but performs some useful action as a side effect.

The basic operations of synthesizing and analyzing list structures
are performed by the synthetic and analytic assignment statements. While
these statements are actually general-purpose list-processing operations,
they are designed to display the linguistic manipulations that these opera-
tions represent. As noted earlier, this is accomplished by using paramet-
ric constants as templates to control the construction and decomposition of
the list structures.
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The synthetic assignment statement is used to build up a list struc-
ture from one or more sublists. It consists of a variable name, the symbol
"/:", an expression called the template expression (which is usually a
parametric constant), a sequence of additional expressions each preceded
by a comma, and a period; i.e.,

name /= expressiontemplate , expressiony , ..., expressionn.

This statement first evaluates all the expressions. It then creates a copy
of the value of the template expression (i.e., a new list structure similar
to the structure which is the template value) and assigns the copied list to
the variable named on the left. However, as the copy is produced, each
parameter element in the list striucture is replaced by the value of expres-
sion;, where i is the index of the parameter element.

For example, suppose that X has the value (FACTOR/ABE), and Y
has the value (FACTOR/BED). Then the synthetic assignment statement

Z /= (TERM/(FACTOR)*(FACTOR)), X, Y,

will assign to Z a copy of (TERM/(FACTOR)*(FACTOR)).in which the first
parameter is replaced by the value of X and the second parameter is re-
placed by the value of Y. Thus Z will be given the value (TERM/ABE*BED).
(The explicit list structures for this example are shown in Figure 5.) Simi-
larly, the statement

Z /= (TERM/(FACTOR/2)x(FACTOR/1)), X, Y.
would give Z the value (TERM/BED*ABE), while

Z /= (TERM/(FACTOR/1)x(FACTOR/1)), X.
would give Z the value (TERM/ABEXABE).

The analytic assignment statement is used to decompose a list struc-
ture into sublists, and to compare two list structures. It consists of an ex-
pression called the test expression, the symbol " :/" , a template expression,
a sequence of variable names each preceded by a comma,and a period; i.e.,

expressionoqt =/ expressiontemplate , namej , ... , namep.

This statement first evaluates both expressions. It then compares, element-
by-element, the list structures that are the values of these expressions.
During the comparison, whenever a parameter element with index i is en-
countered in the template structure, the corresponding sublist in the test

structure is made the value of the variable indicated by name;.
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Fig. 5. List Structures Used by Synthetic and
Analytic Assignment Statements

For example, suppose Z has the value (TERM/ABE*BED). Then
the analytic assignment statement

Z =/ (TERM/(FACTOR)*(FACTOR)), X, Y.

will give X the value (FACTOR/ABE) and Y the value (FACTOR/BED).
(The explicit list structures for this example are again given by Figure 5.)

An additional property of the analytic assignment statement arises
from the possibility that the comparison of the test and template list struc-
tures may show that these structures are dissimilar (beyond the occurrence
of parameter elements in the template in place of sublists in the test struc-
ture). If the list structures do not match, then the analytic statement fails,
without changing the value of any variables. (Failure is a conditional con-
trol mechanism explained below.)

Thus, if Z has the value (TERM/ABE*BED*CAB), which is not a term
composed of two factors, then the statement given above will fail, leaving the
values of X and Y unchanged.

The synthetic and analytic assignment statements are generaliza-
tions of the "Parameter Operations" used by Brooker and Morris in their

Compiler Compiler. (2)

H. Control Statements and Failure

Control statements are used to perform tests and to alter the normal
statement-by-statement sequence of control. The control statements refer
to other statements in the same generator definition by means of statement
numbers, which are unsigned nonzero integers. Any statement may be
labeled with a statement number by prefixing the number, followed by a
slash, to the statement. For example,

10/ Z /= (TERM/(FACTOR)*(FACTOR)), X, Y.
The unconditional jump statement consists of a plus sign, a state-

ment number, and a period. It causes control to jump to the statement which
has been labeled with the statement number. Thus,

+10.
sends control to the statement labeled 10.
The conditional jump statement consists of a plus sign, a statement

number, the word IF or UNLESS, and an unlabeled assignment statement;
i.e.,

¥

UNLEssS 2% signment-statement

+ statement-number {

This statement first performs the assignment statement on the right, and
then conditionally executes a jump to the indicated statement number, de-
pending on whether the assignment statement has failed. When IF is used,
the jump is executed if failure has not occurred; when UNLESS is used, the
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jump is executed if failure has occurred. If the jump is not executed, con-
trol passes to the next statement.

For example, consider the statement
+ 10 IF Z :/ (TERM/(FACTOR)*(FACTOR)), X, Y.

If the value of Z is a term composed of two factors, then this statement
will assign these factors to the variables X and Y and transfer control to
statement 10. On the other hand, if the value of Z is not a term contain-
ing two factors, control will pass to the next statement without altering X or Y.

Failure is the basic control mechanism used in COGENT. In gener-
al, a failure may occur in three ways:

1. Certain primitive generators used to perform tests may fail.

2. An analytic assignment statement will fail if the list structures
being compared do not match.

3. A control statement written "$FAILURE." is provided which
simply fails without taking any other action.

When a failure occurs, it is propagated upwards through the chain
of generator calling sequences until a conditional jump statement or the
syntax analyzer is reached. Thus, when an assignment statement calls a
generator that fails, the statement fails without calling further generators
or assigning values to its variables. When a statement in a generator fails,
unless it is a substatement of a conditional jump statement, the generator
fails. When a statement within a conditional jump statement fails, the
jump statement does not fail, but branches appropriately. Finally, if a
failure propagates all the way to the syntax analyzer without encountering
a conditional jump statement, an error stop occurs.

The ability of a failure to propagate up a long chain of calling se-
quences is a useful mechanism for describing complex processes which
may either run to completion and return a result, or else fail at an arbi-
trary point in their operation. Such a process, perhaps involving numerous
recursions and many generators, may be coded to terminate upon a failure
at any point in its operation.

A final type of control statement is the return statement, with the
format:

$RETURN ( expression )

L

This statement evaluates the expression and then causes an exit from the
generator containing the statement, with the value of the expression as the
result of the generator.

I. Declarations

In format, a complete generator definition consists of the following:
1. The characters "$GENERATOR".

2. The name of the generator being defined, followed by two left
parentheses.

3. A sequence of input variable names, separated by commas.

4. A right parenthesis.

5. A sequence of declarations.

6. A sequence of statements.
7. A right parenthesis and a period.
(Actually it is possible to insert, between items 5 and 6, one or more gen-

erator definitions which define subgenerators, but a discussion of sub-
generators will be postponed until the next chapter, pp. 56-59.)

The purpose of the input variable sequence and the declarations is to
specify the meaning of the alphanumeric names which appear within the
statements of the generator definition. The input variable sequence and the
declarations are said to control the appearances of names in the statements
of the same generator definition. Two appearances of the same name (e.g.,
in different generator definitions) may have different meanings if the ap-
pearances are controlled by different declarations.

A local declaration normally has the format:

$I.OCAL name, ... , name .

It specifies the names that it contains to be local variables of the generator
containing the declaration. When this generator is called, new storage is
allocated for its local variables, and when the generator exits, this storage
is released. Thus the values of local variables are lost when the generator
exits.

The input variable sequence specifies the names that it contains to be

input variables of the generator containing the sequence. Input variables
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behave in the same manner as local variables, except that when storage is
allocated for the variables upon entrance to the generator, the variables

are initialized to the input arguments of the generator. Thus, the input
variable sequence determines the number and ordering of input arguments
for a generator, so that all calls of the generator, both from the syntax
analyzer and from other generators, must match the input variable sequence
of the generator in number and ordering.

An own declaration, with the format:
$OWN name , ... , name..

specifies the names that it contains to be own variables of the generator
containing the declaration. Storage for own variables is permanently allo-
cated, although the variables can only be referred to by the generator to
which they belong (or its subgenerators). Thus, when a generator exits,
the values of its own variables are not lost but are available to later calls
of the same generator.

The distinction between local variables (or input variables) and own
variables appears most clearly in the case of recursive generators, which
are generators that call themselves (either directly, or indirectly through
one or more other generators). When a recursive generator calls itself,
the current values of its local variables are "hidden" in a pushdown stack,
and fresh storage is allocated for these variables. When the called gener-
ator returns to itself on a higher level, this storage is released, and the
local variables reassume their hidden values. On the other hand, own vari-
ables are not hidden, so that values which have been set by the calling
generator may be accessed and changed by the (same) called generator. In
effect, local variables are independent on each level of the recursion, while
own variables are the same on all levels.

A third type of declaration is the pseudoconstant declaration, which
defines names to be abbreviations for long or frequently used constants.
It has the form

$PCON name = constant, ... , name = constant .

and defines each name to represent the following constant. Any appearance
of a name controlled by a pseudoconstant declaration is completely equiva-
lent to the corresponding constant. A name controlled by a pseudoconstant
declaration must never appear in a statement that assigns a value to this
name, since it is meaningless to assign a new value to a constant.

J. Generator Elements

In certain types of COGENT programs, it is convenient to use vari-
ables that take on generators themselves as their values. This capability

is provided by defining a special type of list element called a generator
element, which has a single component giving the entry address of a gen-
erator. A generator element may appear as the value of any variable or
may even be imbedded within a larger list structure.

The introduction of generator elements allows us to give a more
general interpretation to the concepts of generator names and compound
expressions. A generator name is actually a special kind of pseudoconstant
which denotes a generator element giving the appropriate entry address.

On the other hand, the first item in a compound expression, which is nor-
mally a generator name, may actually be any expression whose value is a
generator element.

For example, suppose that X has been declared as some type of
variable, while PLUSCOMP is a generator name. Then the execution of the

statement
X = PLUSCOMP.

will set X to a generator element giving the entry address of PLUSCOMP.
Then at a later step in the computation, the statement

7 = X(Y).
will call PLUSCOMP with the value of Y as an input argument.

Similarly, if SILLY and PLUSCOMP are generator names, then the

statement
Z = SILLY(Z, PLUSCOMP).

will call SILLY and provide the generator element for PLUSCOMP as the
last argument of SILLY. The generator definition for SILLY might have

the form:

$GENERATOR SILLY ((X, G) ...

in which the expression G(Y) would cause SILLY to call the generator indi~-
cated by its last argument (in this case PLUSCOMP).

A more esoteric example is a compound expression such as

RIDICULOUS (X) (Y)
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which is allowable if the result of the generator RIDICULOUS is a genera-
tor element. In the evaluation of this expression, RIDICULOUS is called

with the value of X as its argument, and then the generator whose element
is the result of RIDICULOUS is called with the value of Y as its argument,

The generalizations introduced here lead to the problem of deter-
mining when a name is a generator name, as opposed to the name of a
variable whose value is a generator element. The general rules will be
given in the next chapter (pp. 62-64); for the present, we state that (when
subgenerators or main declarations are not involved) a name is a genera-

tor name if it is not controlled by any declaration or input variable sequence.

K. Primitive Generators: Arithmetic

A primitive or built-in generator is a generator that may be used
in a COGENT program without being defined. Many primitive generators
are provided in COGENT for a variety of purposes, including arithmetic,
identifier-handling, and output operations.

Numbers in COGENT are represented by a special type of list ele-
ment called a number element, which contains two components: a mode
(integer or floating-point) and a value. The value components of floating-
point numbers have fixed lengths, but the value components of integers
have variable lengths depending upon the magnitudes of the integers. Thus
there is no overflow in integer arithmetic; if the result of an operation has
a length that exceeds the memory space used by its operands, additional
space is automatically provided. This facility for arbitrarily long integers
is particularly valuable in algebraic manipulation programs, in which exact
fractional coefficients may be used throughout the computation.

Three primitive generators, named DECCON, OCTCON, and
FLOATCON, are provided to convert list structures into number elements.
Each of these generators accepts a single argument which is a list struc- -
ture representing a string of object characters. This list structure is con-
verted into a string of object characters by character scanning, and then
the string is converted into a positive number element, as a decimal integer,
octal integer, or floating-point (decimal) number.

Several primitives are also provided for performing arithmetic op-
erations upon number elements. For example, ADD(X, Y) will produce a
number element representing the sum of the elements X and Y. These gen-
erators accept either integer or floating-point arguments. If all the argu-
ments are integers, the result will be an integer, but if any argument is
floating-point, then any integer arguments will be converted into floating~
point, the designated operation will be performed, and a floating-point result
will be returned.
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A special type of constant may be used in generator definitions to
denote positive integer (but not floating-point) number elements. Such a
constant is written simply as a string of digits followed by an optional "B".
The letter B indicates that the digit string is to be interpreted as an
octal number.

L. Identifiers

The examples we have given suggest that list structures frequently
require an inordinate amount of storage to represent phrases of objeCft
language. In particular, an object language will usually contain certain
phrases whose division into subphrases is of no interest, and which there-
fore should be carried along through a computation as packed character
strings rather than as list structures. Such phrases (for example, varia-
bles in the polynomial language we have defined) are called identifiers and
may be represented in COGENT programs by a special type of list element
called an identifier element, which contains a component giving the appro-
priate packed character string.

Identifier elements are grouped into one or more identifier tables,
which are distinguished by positive integers called table numbers. Each
table has the property that no two elements within the table can contain the
same character string. Thus if two list names refer to identifier elements
in the same table and with the same character string, the names must refer
to the same element; i.e., the names themselves must be equal.

Specifically, an identifier element contains four components:

1. The table number.

2." The association list name. This component may be set by the
programmer to point to an arbitrary list structure, and is usually used to

associate declarative or descriptive information with an identifier.
¢

3, The table link name. This component is used to link identifier
elements together for table searching. It is not directly accessible to the

programmer.
4. The character string, stored in a packed BCD format.

Identifier elements are created by the primitive generator IDENT(X,
N), which accepts a list structure X and a positive integer number element
N denoting a table number. The list structure X is scanned to obtain a
string of object characters, and then identifier table N is searched for an
element with the same character string. If such an element is found, it is
returned as the result of IDENT; otherwise a new element with the appro-
priate string is added to table N and returned as the result,
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Two primitive generators are provided for setting and obtaining
association lists. SETA(I, X) accepts an identifier element I and an arbi-
trary list structure X and replaces the association list name of I by X,
It does not return a meaningful result. ALIST(I) accepts an identifier ele-
ment I and returns the association list name from this element.

M. Output

Output operations in COGENT usually consist of two phases:
character scanning, which reduces a list structure to a string of object
characters, and character output, which assembles these characters into
records and sends these records to the appropriate output device.

Character scanning may be performed by using the primitive gen-
erator STANDSCN(X, CR), which accepts a list structure X to be scanned,
and a second argument CR, which must be a generator element denoting
a generator called the character receiver. The character receiver is a
one-argument generator which will be called repeatedly by STANDSCN and
given on each call an argument representing a single object character, i.e.,
a positive integer number element giving the BCD code for the character.

STANDSCN will reduce a list structure containing normal elements
according to the appropriate productions. If an identifier element is en-
countered in the scan, it will be replaced by its character string. If a posi-
tive integer number element is encountered, it will be replaced by a sequence
of digits giving its decimal representation. If any other type of nonnormal
element is encountered, STANDSCN will fail.

The programmer may alter the response of STANDSCN to number
elements by methods described in Chapter III (pp. 84-93). He may also
define his own character-scanning generator in terms of more basic primi-
tive scanning generators.

The character-output phase is performed by the character receiver.

For printed output, the primitive PUTP(C) may be used as a character re-
ceiver. On each call, PUTP accepts an integer C giving the BCD code for

a single character, and repeated calls of PUTP place these characters in
successive positions of a print line. When the character position reaches

a margin limit, the current print line is written on the printed output tape,

a new line is initialized, and the next character is placed at the left of the
new line. A second primitive output generator OUTP() outputs the current
line, even if the margin limit has not been reached, and then initializes a
new line.

The primitive generators PUTC(C) and OUTC() are analogous to
PUTP and OUTP, but produce BCD card images on the punched output tape.
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Thus, for example, to print the object character string represented
by the list structure X and then skip to a new line, one would use the

statements:
STANDSCN(X, PUTP). OUTP().

Similarly, to punch the character string on cards and then skip to a new

card, one would use:
STANDSCN(X, PUTC). QU TC().

Normally, PUTP and PUTC output character strings in a free-field
format running from one print line or card to the next. However, the pro-
grammer may introduce more sophisticated output formats by altering t}‘le
response of PUTP or PUTC to special character codes or to margin limits

(as described in Chapter III, pp. 96-102). He may also define his own
character-receiving generator in terms of more basic output primitives,

A separate set of output primitives is available for outputting

numbers onto binary cards.
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CHAPTER 1I
SPECIFICATION OF THE COGENT LANGUAGE
This chapter gives a complete specification of the COGENT
language, including a number of features not described in Chapter I. The

material is organized for convenient reference and assumes a familiarity
with the basic concepts discussed in Chapter I.

A. List Structures

1. Types of List Elements

List structures in COGENT are composed of elements of the
following types:

. a. Normal Elements. A normal element indicates the par-
titioning of a phrase of object language into its immediate subphrases

and/or characters, according to a particular production. It contains the
following components:

1) A production code number p, such that 1 < p=1023,

2) Zero or more names of sublists. These names must
correspond in number and order to the phrase class
names appearing in the construction string of the pro-
duction denoted by the production code number.

b. Identifier Elements. An identifier element represents a
packed string of object characters. Each element is a member of the
identifier table designated by its table number, and no other element in the
same table may represent the same character string. An identifier element
always has the following four components:

1) The table number n, such that 0 <n < 511.

2) The association list name, which may be set by the
programmer to point to an arbitrary list structure.

3) The table link name. This component is used to link
identifier elements together for table searching. It is
not directly accessible to the programmer.

4) The character string, represented by a packed sequence

' of output codes for the corresponding characters. The
string may contain zero or more characters, subject to
the limitation that the total number of characters, plus
the number of characters with output codes larger or
equal to 755, must not exceed 1016,,.
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Identifier elements with a table number of zero are treated in a special
manner. They are not placed in any table, and no attempt is made to
coalesce two such elements with the same character string.

c. Number Elements. A number element represents an
integer or floating-point number, and always contains two components: a
mode component indicating integer or floating-point, and a value. The
representable range of integers is limited only by the storage available for
list structures. The range and precision of floating-point numbers is
determined by the 3600 double-precision representation.

d. Parameter Elements. A parameter element represents
a parameter in a parametric object phrase. Each parameter element con-
tains a single component, the parameter index i, such that 1 =i =50.

e. Generator Elements. A generator element represents a
generator and contains a single component, the entry address of this
generator. Distinct generator elements always refer to distinct generators.

f. The Dummy Element. This is a special no-component ele-
ment with a unique name. The dummy element is used as an initial value
for variables and for the association list names of identifiers (when not
otherwise specified by the programmer), and as the result of generators
that do not produce a meaningful result.

In general, any component of a list element that is a name
(except an identifier table link) may point to any type of list element. Note
that the various limits given on the size of components apply specifically
to the 3600 COGENT system.

2. Representation and Storage Allocation

Within the computer, during the running of a compiled COGENT
program, a pushdown stack of consecutive words provides dynamically
assigned storage for the variables of the generators, and thus contains the
names of the list structures being used in the computation. The list ele-
ments themselves are represented by small arrays in a separate storage
area called list storage; the name of an element is simply the address of
the corresponding array. (Since elements may vary in their number of com-
ponents, the list structures of COGENT are essentially plexes, in the sense
defined by D. T. Ross.)(5) List storage is divided into active and free
areas. When the free area is exhausted, a storage recovery routine is
automatically called which marks all active elements and then retrieves
the remaining elements to form a new free-storage area.

Thus the internal mechanism for handling list structures in
COGENT follows the basic approach used in the LISP programming
system(3) but differs in two important respects. First, the storage space
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required to represent an element varies with the type and number of com-
ponents of the element. This use of variable-sized elements requires that
the free-list storage area must be a coalesced block, rather than a linked
list of free elements, so that new elements of arbitrary size may always be
created. To produce such a coalesced block, the storage-recovery algorithm
must relocate the active elements after marking them. This algorithm is
based on a scheme proposed by D. Edwards.(6)

Secondly, certain short but frequently used types of elements
are represented by literal names, i.e., names that are not addresses of
arrays in list storage, but are rather addressed-sized quantities giving a
direct encoding of the components of the named elements. Literal names
are used for normal elements with no sublists, integer number elements
with magnitudes smaller than 1024, parameter elements, and the dummy
element. This use of literal names provided significant savings in both stor-
age space and execution speed.

The nature of the storage-recovery algorithm places one re-
striction on the form of list structures. In certain programs, either the
syntax analyzer or the generators may create long chains of normal list
elements, in which one component of each element points to the next element.
When such chains are very long, i.e., more than a few hundred elements,
they should be linked by the first component of each element (beyond the
production code number component). Otherwise, the storage recovery
routine may exhaust pushdown storage while attempting to mark a long chain
of active elements.

The linkage of such chains is determined by the form of the pro-
ductions associated with the elements. To obtain first-component linking,
any production which recursively defines an arbitrarily long sequence of
phrases (providing very long sequences of these phrases will actually occur
in the object language) should recur on the first phrase class name in its
construction string. For example, suppose that the phrase class
(STATEMENT SEQUENCE) is to be defined as an arbitrarily long sequence
of (STATEMENT)'s, and that very long sequences of (STATEMENT)'s will
actually occur in the object language. Then the recursive production

"

(STATEMENT SEQUENCE) = (STATEMENT SEQUENCE)

(STATEMENT).

should be used instead of

(STATEMENT SE QUENCE)

(STATEMENT)
(STATEMENT SEQUENCE).

since the first production will cause a (STATEMENT SEQUENCE) to be repre-
sented by a chain of list elements linked on their first components.
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B. Basic Symbols of the COGENT Language

To describe the syntax of the COGENT language itself, wef'w1llt}1;se
the Backus notation.(4) COGENT productions .could be used tc? d.e 1;1ette:, o
syntax of the COGENT language, but for expo§1tory Purposes it is be o L
use a distinct language, which is well-known in the literature on comp ,

than to describe COGENT in terms of itself.

In the Backus notation, the names of phrase classes of the C?G'FNT
language are written as character strings enclosed by the bra.clze;:fs th<e -
and ">", The productions relating these phrase gl}asses consis et
of the phrase class being defined, the symbc?l moo=n, and' one or in re string
of characters and phrase class names showing alternatw'*e cons 11‘:11 tons
the phrase class. In compound productions, the alt.ernatlve con.s 1ruhrase-
strings are separated by the symbol "". For clarlt?r, the s.pec1a P
class <empty> is used to denote an empty construction string.

The Backus notation is simply a transliteration of the notation for

— 1"
ductions used within COGENT, in which the characters "=", " ("', mn,
ﬁr“o nd "." are replaced by "::=" ngw, nstonn and an end-of-line,
, ' 2 .‘ B ’ 1o
respectively, and in which the object characters w(n, ), monand "' no

longer need to be parenthesized to prevent ambiguity.

COGENT programs are prepared on punched cards, usi-ng col:rr;?{s- 1
to 72 of each card. The standard 48-character FORTRAN szt is zssoénda_
cluding the redundant (4-8) minus sign. However, blankz ?.nd c:c:erd Joun
ries are ignored, so that the program may 1?e spaced and inden y
for readability. The characters are classified as:

<letter> ::= AIBICIDIEIFIGIHIIJIKILIMINIOIPIQIRISITIUIVIWIX)
YIZ
<digit> ::= 0l11213141516171819

<normal character> ::= <letter>|<{digit>| =]+ -1¥| /|$

< special character> ::= I,](l)

In terms of these characters, the following basic symbols are

defined:
<name string> ::= <letter>|<{name string> <letter>|

<name string><digit>
<digit string> ::= <digit>] <digit string> <digit>

<open phrase class name> ::= {name string>
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< phrase class name> ::= (< open phrase class name>)
<{name> ::= {name string>

<positive decimal integer> ::= <digit string>
{positive octal integer> ::= <digit string>

{positive integer > ::= ¢ positive decimal integer >|

< positive octal integer >B

{object character representative> ;:= <normal character>|

(<special character>)|($<name string >)

A name may represent a variable, pseudoconstant, or generator name,
depending upon its controlling declaration. An object character representa-

tive is a symbol used in productions, constants, and character definitions
to represent a character of object language. The format ($<name string>)

is provided for representing object characters that are not characters of
the COGENT language itself.,

C. Overall Structure of a COGENT Program

A complete COGENT program has the overall structure:

{COGENT program» ::= <character description>

{primary syntax description> <secondary syntax description>

< generator description>

The character description allows the programmer to define arbi-
tarily the meaning of object character representatives by using character
definitions, which specify the representatives in terms of numerical codes
for the object characters. The entire description may be omitted, in
which case certain standard definitions are assumed for the object charac-
ter representatives.

The primary syntax description gives a sequence of primary pro-
ductions describing the input object language, which control the compilation
of the syntax analyzer. This description also gives a sequence of goal
specifiers, which determine the overall phrase classes for which the
analyzer is to search.

The secondary syntax description gives a sequence of secondary
prc‘Jductlons describing the output object language plus any intermediate
object languages which may be used in a computation. The basic distinction
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between primary and secondary productions is that only primary productions
affect the compilation of the syntax analyzer, while the combined set of
primary and secondary productions is used to translate constants into list
structures and to compile tables for the primitive character-scanning

generators,

The generator description gives the generator definitions and associ-
ated declarations which control the compilation of generators.

D. The Character Description: Character Definitions

<character description> ::= {empty>|
$CHARDEF << character definition sequence)>

<character definition sequence> ::= < empty>|

& character definition sequence> {character definition>

<character definition> ::= (object character representative>=

< input code sequence)> < skip code sequence) {output code>.

<input code sequence> ::= (<open code sequence )
<skip code sequence)> ::= <empty>|(< open code sequence>)
<open code sequence> ::= < positive octal integer>|

< open code sequence >, positive octal integer>
Loutput code> ::= < positive octal integer>
Each character definition defines the object character representa-
tive on its left by a set of octal integers consisting of one or more input
codes, zero or more skip codes, and a single output code. (Note that these

octal codes are not suffixed with the letter B.)

1. Input and Skip Codes

The input and skip codes for an object character representative
determine how the corresponding object characters will be recognized in the
input character string. The syntax analyzer reads the input medium by
calling a machine-language routine called the input editor, which furnishes
a sequence of character codes (in general, these codes may be integers be-
tween 0 and 377g, inclusive), At a given instant, the analyzer inspects only
a single member of this sequence, called the current character code, which
always corresponds to the next-to-be-recognized object character.




Before recognizing an object character, the analyzer tests
whether the current character code matches one of the input codes given
by the corresponding character definition. If a match is found, the object
character is recognized, and the current character code is advanced to the
next code that does not match any of the skip codes for the just-recognized
object character. Thus the input codes in a character definition specify
the codes that may represent the defined character on the input medium,

and the skip codes specify the codes to be ignored when they follow one of
the input codes.

A standard input editor is provided with the COGENT system,
but the programmer may write his own input editor in machine language if
the standard editor is not suitable. The standard editor reads columns 1
to 72 of input card images and furnishes the corresponding 3600 internal
BCD codes, deleting blanks and end-of-card indicators. Upon encountering
an end-of-file, the standard input editor produces the single input code 101g;
this code is also produced when a card containing asterisks in all columns

from 1 to 72 is encountered, so that such a card acts as a pseudo-end-of-file,

Note that meaningless character codes may be deleted either by
the input editor or by the use of skip codes; the former method is faster in
execution, but the latter is more general and easier to program.

2. Output Codes

The output code for an object character representative deter-
mines how the corresponding object character will be represented on the
output media. More generally, whenever a list structure is subjected to a
character scan to reduce it to a string of characters, each object character
is replaced by its output code. Thus output codes are used to represent
object characters, not only in output operations, but also in the packed
strings within identifier elements and in the strings that are converted into

number elements. All output codes must be numbers between 0 and 373g
inclusive.

3. Standard Character Definitions

Before reading the character description, the COGENT system
assumes a set of standard character definitions which define all object
character representatives, except those with the ($<name string >) format,
in terms of their 3600 internal BCD codes, If the character description
is empty, these standard definitions are used in compiling a COGENT pro-
gram. However, a nonempty character description may be used, either to
define new representatives of the $-type, or to redefine the standard repre-
sentatives, since a character definition in the character description will
take precedence over a standard definition of the same representative,

The standard built-in character definitions are:

A = (21)21. B = (22)22. C = (23)23. D = (24)24.
E = (25)25. F = (26)26. G = (27)27. H = (30)30.
I = (31)31. J = (41)41 K = (42)42 L = (43)43
M = (44)44. N = (45)45 O = (46)46 P = (47)47
Q = (50)50. R = (51)51. S = (62)62 T = (63)63.
U = (64)64. V = (65)65. W = (66)66. X = (67)67.
Y = (70)70. Z = (71)71. 0 = (00)00 1 = (01)01
2 = (02)02. 3 = (03)03 4 = (04)04. 5 = (05)05.
6 = (06)06. 7 = (07)07. 8 = (10)10. 9 = (11)11
= = (13)13. + = (20)20. - = (40)40 = (54)54.
/= (61)61. $ = (53)53. (() = ('74)74. () = (34)34
(,) = (73)73. (.) = (33)33.

E. The Syntax Descriptions: Productions

< primary syntax description> ::= $PRIMSYN( goal specifier

sequence > )<{primary production sequence >

{primary production sequence> ::= {empty>|

< primary production sequence><primary production>
<primary production> ::= { production>

< secondary syntax description> ::= {empty>|

$SECSYN( secondary production sequence>

< secondary production sequence> ::= {emptyD|

< secondary production sequence)> secondary production>
< secondary production)> ::= { production>

<production> ::= (label sequence>special label>< forcing marker>

< resultant>=(construction string sequence>.

< construction string sequence> ::= <{construction string>|

<construction string sequence>,{construction string>
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construction string> ::= <empty> |
{construction string>< object character representative>|

{construction string> < phrase class name>
{resultant> ::= ¢ phrase class name>
<{forcing marker> ::=¢ empty >|x

{special label> ::= ¢ empty>| $IDENT, ¢ positive integer>/|
$OCT/|$DEC/|$FLOAT /| $NOP/| $SNOTRAN/

{label sequence> ::= <empty>|{label sequence> < label >
<{label> ::= <name>/

{goal specifier sequence> 1= goal specifier |

<goal specifier sequence),<goal specifier>
<goal specifier> ::= {goal><terminator sequence>
<goal> :r= ¢phrase class name>

{terminator sequence> ::= {terminator |

{terminator sequence>< terminator)
{terminator> ::= < object character representative>

1. Special Labels

The general format for productions involves several features
which were not discussed in Chapter 1. Special labels are used to alter the
form of the list structure produced by the syntax analyzer (and similarly
to alter the list structures created from constants in generator definitions).
The four character-packing special labels $0CT/, $DEC/, $FLOAT/, and
$IDENT, n/ cause the analyzer to convert a phrase of object language into
a single number or identifier element, instead of the usual list structure
representing the construction tree for the phrase,

Thus when a production has the special label "$IDENT, n/", any
phrase that is partitioned by this production will be converted by the analyzer
into an identifier element, in the identifier table indicated by n, which con-
tains the characters of the phrase (i.e., the string of output codes for these
characters). Similarly, when a production has the special label $OCT/,
$DEC/, or $FLOAT/, any phrase partitioned by the production will be con-
verted into a number element obtained by converting the characters of the

hrase as a positive octal integer, decimal integer, or f'loating—Poirit lx)m.lrn-
I1;er The list elements produced by the character-packing special ZC?OSN
are.similar to the results of the primitive generators OCTCON, DE ,

FLOATCON, and IDENT, but the special labels allow these elemen.ts to be
produced directly from the input string, without going through the inter-

mediary of a construction-tree type of list structure.

For example, consider the polynomial object language defi?xed
in Chapter I. If the production that defines variables is given the special

label

$IDENT,1/ (VARIABLE) = (STRING). (8")

then variables will be converted into identifier elements"in‘ 1dent:if1erit1:zz-r
ble 1, instead of extended list structures. Thus when (8") 1;;11s\IeOI:/I<IaAL/
the inputstring "-(A+B)*DC" or the equiva}ent constant (PO NOMIAL/
—(()A+B())*DC) will be converted into the list structure shown in Fig ,

as opposed to the structure in Figure 2.
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Identifier Element
in Table 1
Containing "DC"

N

N
4

1

1

o~

Identifier Element
in Table 1
Containing "B"

\“’\“\“’\

=

Identifier Element
in Table 1

Containing "A"

Fig. 6. List Structure for n-(A+B)*DC"
Using the Special Label " $IDENT,1/™
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The special labels $NOTRAN/ and $NOP/ have a more subtle
effect. Normally (in the absence of a special label), when the syntax
analyzer recognizes a phrase partitioned by a particular production, one
of two actions occurs: (a) If the production does not have a regular label,

a single list structure will be produced by creating a new head element
containing the code number of the production and pointers to sublists repre-
senting immediate subphrases of the recognized phrase. (b) If the pro-
duction has a regular label, a new list element will not be created by the
analyzer; instead, the lists representing subphrases will be given directly

to the appropriate generator, and the result of this generator will represent
the recognized phrase.

The special label $NOTRAN/ is used to force the creation of a
new list element as in (a), even in the presence of one or more regular
labels. Then if a generator is indicated by a regular label, it will receive
as input a single list structure representing the entire phrase, rather than
structures representing the immediate subphrases. For example, if

ADDCOMP/ (POLYNOMIAL) = (POLYNOMIAL)+(TERM).
were used in our polynomial-describing production set, then during the

analysis of "-(A+B)xDC" the generator ADDCOMP would receive the two
arguments shown in Figure 3a. But if

ADDCOMP/ $NOTRAN/ (POLYNOMIAL) = (POLYNOMIAL)+(TERM).

were used, the generator ADDCOMP would receive the single argument
shown in Figure 7.

Fig. 7. List Structure Given to a
Generator When the Special
Label $NOTRAN/ Is Used
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The special label $NOP/ is used to suppress the creation of a
new list element by the syntax analyzer, even in the absence of regular '
labels. When the analyzer recognizes a phrase partitioned by a p.roduct}on
with the special label $NOP/, the list structure representing the immediate
subphrase of this phrase will be taken directly to represent the phrase
itself. Implicit in this definition is the assumption that t1.1e phrase has
only a single immediate subphrase; thus the $NOP/ special label mayionlly
be attached to a production containing exactly one phrase class name 1n its
construction string.

The use of $NOP/ can produce a substantial compressic?n in
the list structures that represent object phrases, without complicating the
programming of manipulations of these structures. As a rule of thumt?,
it is convenient to attach $NOP/ to any production that has a construction
string containing a single phrase class name and no object character repre-
sentatives, unless the production defines a subphrase of some phrase that
is to be represented by an identifier or number list element. When $NOP/
is used in this manner, the resulting list structures will still be decomposed
into the correct strings of object language by the primitive charact'er-
scanning generators. In addition, since $NOP/ affects the conversion of
constants into list structures as well as the action of the syntax analyzer,
the list structures denoted by constants will be compressed in the same
manner as the structures produced by the analyzer.

As an example of the compression of list structures that may
be obtained by a judicious use of $NOP/ and the character-packing spec1a'.1
labels, consider the following version of the productions for our polynomial

language:

LETTER) = A, B, C, D, E. (1n-5n

STRING) = (LETTER),(STRING)(LETTER). (6n-7n

$IDENT,1/ (VARIABLE) = (STRING). (8"
$NOP/ (FACTOR) = (VARIABLE), (9
FACTOR) = (()(POLYNOMIAL)()). 10"

P e e

)
)
)
)
)
11m)
)
)
)
)
)

(

$NOP/ (TERM) = (FACTOR). (
TERM) = (TERM)x(FACTOR). (12"
$NOP/ (POLYNOMIAL) = (TERM). (13
(POLYNOMIAL) = +(TERM),-(TERM). (14m-15"
(POLYNOMIAL) = (POLYNOMIAL) +(TERM). (16"
(POLYNOMIAL) = (POLYNOMIAL) -(TERM). (17

The list structure representing the polynomial "-(A+B)xDC" (or the equi-
valent constant) according to these productions is shown in Figure 8. A
comparison with Figure 2 shows the degree of compression achieved.
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15
12
10 Identifier Element

in Table 1
Containing "DC"

16
Identifier Element Identifier Element

in Table 1 in Table 1
Containing "A" Containing "B"

Fig. 8. Compressed List Structure for
"-(A+B)*DC" Using the Special
Labels $NOP/ and $IDENT,1/

2. Multiple Labels

In addition to permitting special labels, the format of pro-
ductions allows the use of more than one regular label. If a production
has several regular labels, then when the analyzer recognizes a phrase
partitioned by this production, a succession of generators will be called,
as indicated by the label sequence from right to left. The first (rightmost)
generator will receive arguments representing the immediate subphrases
(or whatever list structures are indicated by the special label). Thereafter
each generator will receive as input the result of the previous generator,
and the result of the last generator will be taken to represent the phrase.
All labels in a label sequence except the rightmost must denote generators
with a single input argument. Labels (as opposed to special labels) only
affect the syntax analyzer and are ignored during the conversion of con-
stants into list structures,

3. Forcing Markers

A final feature of productions is the forcing marker. The
presence of an asterisk immediately preceding the resultant of a pro-
duction indicates to the syntax analyzer that the production is to be given
preference when necessary to resolve an ambiguity in the object language.
The meaning of the forcing marker will be described more precisely in
the discussion of the syntax analyzer. It is ignored in the conversion of
constants and in the construction of character-scanning tables.

45

4. Preliminary Processing of Productions

As a COGENT program is read by the COGENT system, each
production (either primary or secondary) is subjected to the following pre-
liminary processing:

a. Compound productions (containing more than one con-
struction string) are reduced to the equivalent simple productions. For
each construction string, a separate simple production is created contain-
ing this construction string, plus the label sequence, special label, forcing
marker and resultant which appear in the compound production.

b. If a (simple) production contains the same resultant and
construction string as some previously read production, it replaces the
earlier production. More specifically, the new label string, special label,
and forcing marker replace the corresponding entities of the earlier pro-
duction, but the production code number assigned to the earlier production
is retained.

c. If a production does not match any previously read pro-
duction, it is assigned a unique production code number. These code
numbers are assigned in increasing order, beginning with one.

The syntax analyzer is compiled as soon as the primary syntax
description has been read, so that only primary productions affect the
structure of the analyzer. On the other hand, the compilation of the tables
that govern character scanning, and the conversion of constants into list
structures is controlled by the combined set of primary and secondary pro-
ductions. Thus in general, a COGENT program specifies two distinct
sets of productions: a primary set specified by the primary syntax
description, and a total set specified by the combined primary and secondary
descriptions. When the entire secondary description is empty, these two
sets are identical.

5. Formal Definition of Syntactic Concepts

In a properly written COGENT program, both the primary and
total sets of productions must satisfy several requirements that arise from
the nature of the syntax analyzer and the system routine that converts con-
stants. To state these requirements precisely, we must first define a
number of concepts concerning productions and syntax. In all of these defi-
nitions, we assume a fixed set of productions, which may be either the
primary or total set.

First we must define the notion that a string of object characters
(and possibly parameters) is a phrase belonging to a particular phrase
class. This concept was defined in Chapter I by introducing construction
trees, but we now give a more rigorous definition which does not involve
tree-structure considerations.
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For this purpose, we consider strings consisting of zero or
more elements, which may be object characters, phrase class names, or
parameters. A distinction is made between phrase class names and
parameters, although a particular parameter is always associated with the
phrase class named within the parameter. A string that does not contain
any phrase class names is called a ground string.

Given two strings S and S', S' is called an extension of S if
S' may be obtained from S by replacing a single phrase name in S by
either (a) the construction string of some production which defines this
phrase class name, or (b) a parameter containing this phrase class name.
If the phrase class name being replaced is the last (rightmost) phrase class
name in S, then S' is called a right extension of S. Then a sequence of
strings S° ... Sf is called a construction of Sf from the phrase class named
N if S° is a single-element string containing N, and if each Sit! (i =0) is
a right extension of Si, and if ST is a ground string.

Now suppose we are given a ground string, which may be either
a string of input characters read by the syntax analyzer (i.e., obtained from
a string of input character codes in accordance with the appropriate charac-
ter definitions), or else a string of characters and/or parameters appearing
in a constant. We say that this sfring is a phrase of the phrase class
named N if there exists a construction of the string from the phrase class
named N. If there are two or more distinct constructions of the string
from N, then the string is said to be an ambiguous phrase.

The concept of a construction may also be used to define the
concepts of partitioning and of subphrases. If S' is obtained from S° by
replacing the phrase class name in S° by the construction string of a
production, then this production is said to partition the phrase Sf,

On the other hand, consider any appearance of a phrase class
name in any S! except S°. The successive right extensions which carry S?
into St will map this appearance of a phrase class name into a substring
of Sf; the substring is then said to be a subphrase of Sf. If the appearance
is in S', then the corresponding substring is an immediate subphrase of Sf,

As an example, we give the construction of the string
"-(A+B)*DC" from the phrase class (POLYNOMIAL)

(POLYNOMIAL)

-(TERM)

-(TERM)%(FACTOR)

-(TERM)*(VARIABLE)

-(TERM)%(STRING)

TERM)x(STRING)(LETTER)
TERM)x(STRING)C
TERM)x(LETTER)C
TERM)*DC
FACTOR)*DC
(POLYNOMIAL)())xDC
POLYNOMIAL)+(TERM)())xDC
POLYNOMIAL)+(FACTOR)())xDC
POLYNOMIAL)+(VARIABLE)())xDC
POLYNOMIAL)+(STRING)())xDC
POLYNOMIAL)+(LETTER)())xDC
)

(
(
(
(
(
(POLYNOMIAL)+B())xDC
(
(
(
(
(

(
(
(
(
(
(0
(0)
()
(0)
(0)
()
(0)
(0)
()
()
()
()
()

TERM)+B())xDC
FACTOR)+B())xDC
VARIABLE)+B())*xDC
STRING)+B())xDC
LETTER)+B())xDC

(
(
(
(
(()A+B())*DC

A construction is simply a formalization of the "construction
tree' introduced in Chapter I. As can be seen by comparing the above
construction with Figure 1, each extension in the constructlo.n corresponds
to a nonterminal node of the tree and is performed by replacing the phrase
class name of the node by the names and characters of the subnodes. On
the other hand, if the construction is read backwards, the sequejnce of ex-
tensions becomes a sequence of reductions which correspond, in ?rderf, to
the successive states of a syntax analyzer while analyzing the string St

We must also define several relationships between phrase
classes that are determined by the set of productions. A phrase class
named X is said to span a phrase class named Y if either X and Y are the
same, or if there exists a sequence of phrase class names X, X e Y,
beginning with X and ending with Y, in which each r'1ame aftejr the first N
appears in the construction string of some produc“non. defining the preceding
member of the sequence. Essentially, X spans Y if either X and Y are the
same, or if a phrase of the class Y may be a subphrase of a phrase of the

class X.
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A phrase class is said to be null-containing if the empty string
may -be.a phrase of the class. The set of null-containing phrase classes is
the limit of the sequence

0C e CerC ...

wl.lere go is the set of all phrase classes which are resultants of productions
with an empty construction string, and each €i+1 is the unionof £ with the
set‘of phrase classes which are resultants of productions with construction
strings containing only phrase classes in gi (and no characters).

. A phrase class Y is an immediate head of a phrase class X if
there exists a production defining X in which Y is the first element of the
coPstruction string. Y is an immediate null-preceded head of X if there
ex1§ts a production defining X in which Y is an element of the construction
strlng c'>ther than the first, and all preceding elements are the names of null-
containing phrase classes. Y is a head of X if there exists a sequence X
X',.... ) ‘Y of two or more phrase classes, beginning with X and ending Wi';:h
Y, in which each class after the first is an immediate head of the precedin
class. Y is a null-preceded head of X if there exists a sequence X, X! :
Y 9f two or more phrase classes, beginning with X and ending with ,Y il,‘l
which each class after the first is either an immediate head or an imr;ledi—
'ate nul?-preceded head of its predecessor, and one such class is an
1mmef11ate null-preceded head of its predessor. Essentially, Y is a head
9f X if a phrase of Y may be a first subphrase of a phrase :)f X,and Y
1s a null-preceded head of X if a phrase of Y may be a subphras,e of a

phI:ase of X in which there are one or more preceding subphrases, all of
which are empty strings. ,

csey

6. Restrictions on Production Sets

We may now state the requi i
quirements imposed on both the i
and the total sets of productions: d P

. . ‘.3' The syntax deterrr‘lined by the set of productions must be un-
mbiguous; i.e., there must not exist any string of object characters and/or
pa'rarnete'rs which is an ambiguous phrase of any phrase class. Actually
this requirement may be relaxed slightly for the total (but not the prirna.li )
set of productions., For the total set, all possible phrases need not be Y

unambiguous; only the phrases that actually appear in constants in the
COGENT program must be unambiguous.

COGENT. o This re.quirement is inherent in the basic nature of

' E 51n.ce an ambiguous syntax would give an ambiguous mapping of
input §tr1ngs into list structures. However, the programmer has the re-
sp0n'51b‘i1ity of being sure that the productions he writes do not permit
ambiguities. Certain gross ambiguities will cause the COGENT system to
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reject a COGENT program, but when the ambiguities are more subtle, a
syntax analyzer will be successfully compiled that will operate correctly
unless it actually reads an input string that is an ambiguous phrase.
Ideally, one would like to have a system that would reject any set of pro-
ductions that defined an ambiguous syntax, but this goal cannot be achieved
without seriously restricting the class of acceptable object languages.
Indeed, it can be proven that no algorithm can be constructed that will
accept an arbitrary set of productions and determine whether they define

an unambiguous syntax. 7)

As an example of productions that determine an ambiguous

syntax, consider
(STRING) = (LETTER),(STRING)(STRING).

These productions would not be allowed, since any (STRING) containing three
or more (LETTER)'s would have more than one construction. On the other
hand, either

(STRING) (LETTER),(STRING)(LETTER).

or

(STRING) = (LETTER),(LETTER)(STRING).

is allowable (although the former is preferable, since it minimizes the push-
down storage used by the storage recovery algorithm).

b. The following restriction is placed on the use of character-
packing special labels: If X is any phrase class name appearing in the
construction string of a production with a character-packing special label,
then no phrase class name that is spanned by X may be the resultant of a
production with a character-packing special label.

Thus, for example, the production
$IDENT,1/(STRING) = (STRING)(LETTER).
is not allowed, since (STRING) appears in the construction string of a pro-
duction with a character-packing special label and is also the resultant of

such a production. On the other hand,

(STRING) = (STRING)(LETTER).
$IDENT,1/ (VARIABLE) = (STRING).

is allowable since (STRING) does not span (VARIABLE).
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The necessity for this restriction arises from the in-
ternal operation of the syntax analyzer. When the analyzer is about to
recognize the first character of a phrase that is partitioned by a pro-
duction with a character-packing special label, the analyzer switches
from a "list" mode of operation, in which list elements are created and
generators are called, to a "character" mode of operation, in which object
characters are simply accumulated in a string. After the complete phrase
is recognized, the analyzer switches back to the list mode. Essentially,
the restriction on character-handling special labels is intended to prevent
the analyzer from attempting to switch to a mode that it is already in.

c. No phrase class may be a null-preceded head of itself.
Thus for example,

(DUMMY) =.

(STRING) = (LETTER),(DUMMY)(STRING)(LETTER).
is prohibited, since (STRING) is an (immediate) null-preceded head of itself.

This restriction is necessary because, upon reaching the
beginning of a phrase of a class that is a null-preceded self-head, the syntax
analyzer cannot determine the number of empty phrases to recognize with-
out looking ahead at the character string. (The difficulty is not that the
analyzer is faced with several alternatives, which can only be resolved by
look-ahead, but that the number of alternatives is infinite.)

d. As stated earlier, all productions with the special label

$NOP/ must have construction strings in which the number of phrase classes
is exactly one.

F. The Syntax Analyzer

1. Parsing

Fundamentally, the syntax analyzer is a recursive subroutine
which accepts as arguments a phrase class name called the goal, and one
Oor more object characters called terminators, and which parses the input
string according to these arguments. The operation of parsing involves
finding a substring S of the input string which is a phrase of the class
named by the goal, which begins with the current character code, and which
1s immediately followed by one of the terminator characters. If such a
substring is found, the analyzer advances the input medium past the sub-
string (so that the new current character code is an input code of one of the
terminators), and produces as the result of the parse a list structure repre-
senting S. This result may be defined as follows:
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a. If S is partitioned by a production P whose special label
is empty, or is $NOP/ or $NOTRAN/, then for each ph:'rase class name Xid
in the construction string of P (in order from left to right), the corre5p§n -
ing immediate subphrase of S is parsed with X; as a.goal. T};e ordere
sequence R consisting of the results of these parses 1s formed.

b. If P has an empty label sequence and an empty.special
label, or if P has the special label $NOTRAN/, then a normal. list elem}e;nt
is created containing the production code number of P and p01nters.tc.> the
members of R. R is replaced by (a single-member sequence containing)

this list element.

c. If P has the special label $OCT/, $DEC/, or $FLOAT/,
then the string S is converted to a number element .as a positive octal, e
decimal, or floating-point number, and this element is made the only rg:m
of R. The conversion follows the rules given in the next chapter (ppO.N —S
96) for the primitive generators OCTCON, DECCON, and FLO?TC , a
applied to a sequence of the output codes for the characters in o.

d. If P has a special label of the form $IDENT,n/, then an
identifier element with table number n containing the strlng S (as repre-
sented by the sequence of output codes for each character) is made the

only member of R. If n ;( 0, identifier table n is searched for an already-

existing element containing S, and a new element is created onlyl 1? the .
search fails. If n = 0, no search is made, and an element coTltam?n'g n an
S is created but not actually added to any table. When a new identifier
element is created, its association list name is normalhly set to the. dummy
element. (More generally, it is set to the value of the internal variable

ial, as described in Chapter III, pp. 93-94.)

e. TFor each label of the label sequence of P, in or‘der from
right to left, the generator indicated by the label is called ?.nd given the
members of R as its input arguments, and the result of this generator

replaces R.

f. The final value of R is taken as the result of the par'se.
Note that since the special label $NOP/ must only be used in pr?ductlons
whose construction strings contain one phrase class name, the final value
of R will always contain a single member.

2. Treatment of Ambiguities

Essentially, the syntax analyzer is a recursive rou'cin<=j which
reads and tests character codes from the input medium', creates ‘hst
structures, and calls generators. At various poir‘lts in its operat1on,hthe
analyzer will encounter conditional branch‘es to d1ff‘erent control Il)atthzse
corresponding to different parsings of the input string. Frequently




52

branches will be determined by testing the current character code, which
always ljepresents the first unparsed character in the input string ’ However
at certain points the value of the current character code will be in'ade uate ,
to determine the branch, so that the analyzer must look ahead at furthcisr
characters; such branch points are called ambiguity points.

. . From an abstract viewpoint, the look-ahead problem is solved
y allowing the analyzer to fission into two or more analyzers which
sn"nultar‘leously pursue the different control paths extending from an ambi-
guity point. Thus, in general, the analysis process is carried out by an
assembly of abstract analyzers, each of which may fission into two}cf)r more
?nalyzers upon encountering an ambiguity point, or may fail (i.e., vanish
rom the.as sembly) upon testing an input character incompatible with the
parse bejlng pursued. Ultimately, if all the abstract analyzers fail before
f:ompletlng a parse with respect to the desired goal, then the input string
;ssnot a w;:ll-formed phrase 9f the goal class; if just one analyzer completes
cmeuccefs ul parse, then the input string is well-formed; and if more than
ambiagnjozzfer completes a successful parse, then the input string is

analyzers byTI;ﬁ:‘:jijyn‘f;X analyzer simulates an assembly of abstract
o ymers oy altern, ‘1n.g etw.een two modes: a normal mode, corresponding
o y containing a 811.'1g.1e analyzer; and an ambiguity mode, corre-
P d ing ’Fo an a§semb1y containing several analyzers. In the ambiguity
inrrllotuer,naishzlgig hs;cSl c;f abstract ana',lyzer states is maintained, and each state
o abstra:tc::e ;om the reading of one character code to the next, so
teing. A furthera.na. yzers are synchr‘onllzed by the reading of the input
S iurthe property of t}?e amb‘lgulty mode is that the actions of list
CpasTastion generator calling which would be performed by a single
o nalyzer a're not actua%ly executed; instead, indicators for these
ey ns“z;.ll;e stored in a "recognition queue" which is part of the analyzer
: t}el. en a.,l‘l but one of the abstract analyzers fail, the actions indicated
y the recognition queue of the successful analyzer are carried out d
the real analyzer returns to the normal mode, -

ro conta; F.rorn the viewpoint of the user, the syntax analyzer appears
e r;:}‘;:un an 1'nput processor which reads character codes and passes them
COde0 ahe %ar31ng routlfle. Normally this processor stays a single character
code s rea df)f the parsing routine, but at ambiguity points, it runs further

, Feading as many charact
local" ebipnion, y er codes as are necessary to resolve a

3. Forcing Markers

of abst t The relation between the real syntax analyzer and an assembly
P ract analyzers allows a more precise meaning to be given to the
g markers that may appear in productions. When the analyzer is in
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the normal mode, forcing markers are ignored. But in the ambiguity mode,
if an abstract analyzer recognizes a phrase that is partitioned by a pro-
duction with an asterisk forcing marker, then this abstract analyzer will
immediately force all other abstract analyzers to fail, its recognition queue
will be executed, and the real analyzer will return to the normal mode.
Thus a forcing marker will cause ambiguities to be resolved by giving

preference to the marked productions.

To illustrate the use of forcing markers, consider a simple
assembly language in which an instruction may consist of either the letters
"BCD" followed by a (CHARACTER STRING), or else any alphanumeric
operation code except "BCD" followed by an (ADDRESS FIELD). Such an

object language could be defined by the productions:
(OP CODE) = (LETTER),(OP CODE)(LETTER),(OP CODE)(DIGIT).

*(BCD CODE) = BCD.
(INSTRUCTION) = (OP CODE)(ADDRESS FIELD).

(INSTRUCTION) = (BCD CODE)(CHARACTER STRING).

Upon reading the characters "BCD", the analyzer will be forced to resolve

an ambiguity by ignoring the interpretation of "BCD" as an (OP CODE).

4, Goal Specifiers

When the syntax analyzer is entered on the main level of a
COGENT program, it must be given a goal that specifies the phrase class
for which it is to search, and a set of terminators that specify the possible
input characters which may follow the phrase being sought. This infor -
mation is provided by the goal specifier sequence, which appears at the
beginning of the primary syntax description. Each goal specifier gives a
phrase class name indicating a goal, followed by one or more object
character representatives indicating terminators. When the syntax
analyzer is initially called, it is given the leftmost goal specifier; but after
the analyzer returns from this initial call, it may be called again an
arbitrary number of times and given any of the specifiers in the specifier

sequence.

At any point in the execution of a COGENT program, either
a single goal specifier is active, or else all specifiers are inactive. In-
itially, the first (leftmost) specifier is active, but the active specifier may
be changed at any time by calling the primitive generator SETIVGOL(n),
where n is an integer which indicates the specifier to be made active by
giving its position in the specifier sequence, from left to right. By calling

SETIVGOL(0), all specifiers may be made inactive.
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Although the active goal specifier may be reset at any point in
a COGENT program, its effect always occurs on the main level of the pro-
gram, which consists of repeated calls of the syntax analyzer with the
cur'rent active specifier as its argument. When the program begins exe-
cution, the analyzer is called and given the goal and terminators indicated
by the first specifier. If the input string is well-formed and not ambiguous,
the analyzer will parse it and will exit with the input string advanced so
that the current character code is the first character beyond the parsed
phrase, i.e., one of the terminators. When such an exit occurs, the
analyzer is immediately called again and given the current active specifier;
if no specifier is active, the entire program is terminated.

. Three points should be noted: First, the active specifier that
is set by SETIVGOL has no effect until the next main call of the syntax
fa.nalyzer. Secondly, for each main-level call of the analyzer after the in-
itial call, the first character of the phrase to be parsed will be one of the
terminators for the previous call. Finally, the last character read by the
entire program will be a single character code following the last parsed

phrase and will be one of the terminators for the last main-level call of the
analyzer.

G. Constants

<{parameter> ::= (Copen phrase class name>))|

(<open phrase class name> /< positive integer>)

<object string> ::= {empty>|
< object string>< object character representative)l

< object string ><parameter >

{constant> ::= (< open phrase class name>/< object string >)|

{ positive integer>

Constants are used in the generator description to denote list
structures which are fixed at the time a COGENT program is written and
ére never altered as the program runs. A constant that is simply a positive
?nteger denotes a one-element list structure consisting of the appropriate
integer number element. A constant containing a phrase class name followed
by fa.n object string denotes the list structure obtained by parsing the object
string with respect to the goal specified by the phrase class name.

‘ This parsing of object strings is performed when the program

is ?ompiled by the COGENT system, but it is closely analogous to the

action of the syntax analyzer while the program is being executed. Basically,
the parsing of constants differs from the parsing of input strings by the
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analyzer in three respects: the total production set is used instead of the
primary set, labels (but not special labels) are ignored, and parameters in
the object string are converted into parameter elements in the list
structure.

Given a constant containing a phrase class name N and an object
string S, which must be an unambiguous phrase of the class N, the list
structure denoted by the constant is defined as follows:

1. If S has a single member which is a parameter containing the
phrase class name N, then the resulting list structure is a single parameter
element. If the parameter contains a positive integer, then this will be taken
as the index of the parameter element. Otherwise, the index is the order of
appearance of the parameter among all parameters in the entire constant,
as read from left to right.

2. If S is partitioned by a production P whose special label is
empty, or is $NOTRAN/, then the resulting list structure is headed by a
normal element containing the production code number of P, followed by the
names of sublists representing the immediate subphrases of S, as obtained
by parsing these subphrases with respect to the phrase class names in the
construction string of P.

3. If P has the special label $NOP/, the resulting list structure is
the structure obtained by parsing the single immediate subphrase of S with
respect to the single phrase class name in the construction string of P.

(If P has a $NOP/ special label, it must have a single phrase class name
in its construction string.)

4. If P has the special label $OCT/, $DEC/, or $FLOAT/, then
the resulting list structure is a single number element, obtained by con-
verting S as an octal, decimal, or floating-point number. The conversion
follows the rules given in the next chapter (pp. 94-96) for the primitive
generators OCTCON, DECCON, and FLOATCON, as applied to a sequence
of the output codes for the characters in S. Parameters in S cause an
error warning, but are otherwise ignored.

5. If P has the special label $IDENT,n/, then the resulting list
structure is a single identifier element, with table number n, containing a
string of the output codes for each character in S. Parameters in S are
ignored but cause error warnings. Ifn ;! 0, identifier table n is searched
for an already-existing element (which would be part of the list structure
for a previously compiled constant) containing the desired string, and a
new element is created only if the search fails. If n = 0, the set of previ-
ously compiled tableless identifier elements is searched, andanew element
is created only if a previous tableless identifier with the desired string
does not exist. All identifier elements created by parsing constants have
their association list names initially set to the dummy element, unless
otherwise specified by identifier declarations.,
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The list structures created by parsing constants must never be
altered during the execution of a COGENT program. The only allowable
exception to this rule is the resetting of the association list names of
identifier elements within these structures,

H. The Generator Description: Nesting of Generator Definitions

<generator description> ::= $PROGRAMmain declaration sequence >

<main generator definition sequence>
<main declaration sequence> ::= {declaration sequence)

<main generator definition sequence> ::=

< generator definition sequence>

<generator definition sequence> ::= {empty )|

L generator definition sequence>< generator definition>

<generator definition> ::= §GENERATOR <name>
((<input variable sequence>)
< declaration sequence>< generator definition sequence>

< statement sequence >).

< declaration sequence> ::= {empty>|

< declaration sequence><declaration>

< statement sequence> ::= {empty>| < statement sequence>

< statement>|<staternent sequence>< statement label>
{statement> ::= {assignment statement>|< control statement>

The generator description gives a set of generator definitions, each
of which specifies a list-processing subroutine called a generator. In
general, each generator accepts an arbitrary (zero or more), but fixed,
number of input arguments and either produces a single result or else fails
without producing any result. However, in addition to producing a result
or failing, a generator may influence the course of a computation through
one or more side effects, such as:

1. Writing on the output media.

2. Resetting the value of a global variable, i.e., a variable
associated with another generator, or with the entire program.

3. Creating or erasing identifier elements.

4, Resetting the association list of an identifier element.

5. Altering an existing list structure (as opposed to creating a
new structure) by means of a primitive generator such as
REPLACE. ‘

The syntax of the generator description allows generator definitions
to be nested; i.e., any generator definition may contain within itself the
definition of one or more subgenerators. The value of this nesting feature
lies in the ability of a subgenerator to evaluate and reset variables associ-
ated with the larger generator that contains it.

Several definitions are needed to clarify the relationships between
nested generators. If the definition of generator B is a member of a gener-
ator definition sequence that is an immediate subphrase of the definition of
generator A, then B is an immediate subgenerator of A. More generally,
B is a subgenerator of A if it is an immediate subgenerator of A or an
immediate subgenerator of an immediate subgenerator of A, etc. Finally,
if a generator is defined by a member of the main generator definition
sequence, then it is not a subgenerator of any other generator, and is called

a main generator.

The nest structure requires a careful specification of the relation-
ship between an appearance of a name within a generator definition and the
declaration or input variable sequence that controls this appearance. Con-
sider an appearance of a name within a generator definition (i.e., in a
statement in the definition, or perhaps in an initialization specifier of a
declaration in the generator definition). If the name is defined by some
declaration in this generator definition (and if the declaration appears before
the appearance of the name), then the appearance of the name is controlled
by this declaration. If the name occurs in the input variable sequence of the
generator definition, then the appearance of the name is controlled by the
input variable sequence. But if the name is not defined by a declaration and
does not occur in the input variable sequence, then the appearance of the
name is said to be global to the generator definition.

Now suppose that an appearance of a name is global to the definition
of a generator B, and that B is an immediate subgenerator of a generator A.
If the name is defined by a declaration or input variable sequence in the
definition of A, then this declaration or sequence controls its appearance.
Otherwise, the appearance is global to A as well as to B.

Thus to find the controlling declaration or input variable sequence
for an appearance of a name, one searches upward through the nest of gener-
ator definitions until the first applicable declaration or sequence is found.
However, an appearance of a name may not be controlled by any declaration
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or input variable sequence in the entire nest; i.e., the appearance may be
global to a main generator definition. In this case, if the name is defined
by a main declaration, then its appearance is controlled by this main
declaration. But if the name is not defined by a main declaration, then its
appearance is implicitly declared to be a generator name representing a
main generator or a primitive generator. (Subgenerator names cannot be
implicitly declared, but must appear in generator declarations, as described
in the next section.)

In addition to appearances of names in generator definitions, the
appearances of names in labels within productions may also be controlled
by declarations. An appearance of a name in a production label behaves
in the same manner as a name that is global to a main generator; if the
name is defined by a main declaration, the label is controlled by this decla-
ration; otherwise the label is implicitly declared to be a main or primitive
generator name. This is the only situation in which a declaration may con-
trol a name that appears before the declaration itself. Note that a main
declaration may be used to define a production label to be a variable name
instead of a generator name, providing that the named variable always has
a generator element as its value, In this case, the current value of the
variable will specify a generator to be called by the syntax analyzer.

To illustrate the relation of nested generator definitions and decla-
rations, consider the following skeleton of a complete COGENT program:

$PRIMSYN ... BETTY/ ... DON/ ...
$PROGRAM $OWN SAM,DON. $PCON BILL = (FACTOR/ABC).
$GENERATOR BETTY ((BOB) $GEN SUE, MAE.
$GENERATOR SUE ((SAM) $LOCAL TOM.
... TOM = ADD{ MAE( BILL), SAM). ... ).
$GENERATOR MAE ((JOE) $OWN BOB.
... BOB = BETTY(SAM). ... ).
... DON = MAE. SAM = BETTY( SUE(BOB)). ... ).

In line 1:

BETTY is implicitly declared to be a main generator name.

DON is controlled by the own declaration in line 2.

In line 5:

TOM is controlled by the local declaration in line 4.

ADD is global to SUE and BETTY and is implicitly declared to be
a primitive generator name.

MAE is global to SUE and is controlled by the generator declaration
in line 3.

BILL is global to SUE and BETTY,and is controlled by the pseudo-
constant declaration in line 2.

SAM is controlled by the input variable sequence in line 4.

In line 7:

BOB is controlled by the own declaration in line 6.

BETTY is global to MAE and BETTY and is implicitly declared to
be a main generator name,

SAM is global to MAE and BETTY and is controlled by the own decla-
ration in line 2.

In line 8:
DON is global to BETTY and is controlled by the own declaration
in line 2.
MAE is controlled by the generator declaration in line 3.

SAM is global to BETTY and is controlled by the own declaration
in line 2.

BETTY is global to BETTY and is implicitly declared to be a main
generator name,

SUE is controlled by the generator declaration in line 3.

BOB is controlled by the input variable sequence in line 3.

1. Declarations and Input Variable Sequences

<declaration> ::= {local declaration>| < own declaration>|
< pseudoconstant declaration>|< generator declaration>|

<identifier declaration>
<local declaration> ::= $LOCAL<normal declaration string>.
<own declaration> ::= $OWN< normal declaration string>.

<pseudoconstant declaration> ::= $PCONnormal declaration

string>.

<generator declaration> ::= $GEN¢generator declaration string>.
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Kidentifier declaration)> ::= $IDAidentifier declaration string>.

<{normal declaration string> ::= < name)> <{initialization specifier >|

<normal declaration string>,{name><initialization specifier>

< generator declaration string> ::1=< name)l

<generator declaration string>,<{name>

< identifier declaration string> ::= {constant>< initialization
specifier >|<identifier declaration string>,<{ constant>

<initialization specifier>
<initialization specifier > ::= <empty> | = <constant>| = {name>

< input variable sequence ::= {empty>|

<nonempty input variable sequence>

<{nonempty input variable sequence> ::= <{name )|

<nonempty input variable sequence>,{name>

An initialization specifier indicates an initial value to be given to a
variable, pseudoconstant, or identifier association list. An empty specifier
always denotes the dummy list element. A specifier containing a constant
denotes the value of the constant. When a specifier contains a name, the
name must be a pseudoconstant, and the specifier denotes the value of the
constant associated with the pseudoconstant.

1. Local Declarations

A local declaration gives a sequence of names, each followed by
an initialization specifier, and declares these names to be local variables
of the generator whose definition contains the declaration. The initialization
specifiers indicate the initial values to which these local variables will be
set each time the generator is entered. Local declarations must not appear
in the main declaration sequence of a COGENT program.

To describe the behavior of local variables, it is useful to
formalize the concept of a calling chain. At any instant in the execution of
a COGENT program, the state of the program may be described by a
sequence of generators, called the calling chain, in which each member has
been called by its predecessor and has in turn called its successor. The
recursive capability of the generators allows this chain to contain more than
one appearance of the same generator. In this situation the local variables
of a generator will be allocated separate storage areas for each appearance

of the generator in the calling chain, but only the area corresponding to the
last appearance of this generator will be active, i.e., available for evaluation
and resetting by the generator and its subgenerators. Thus when a gene-
rator is called, a new area for its local variables is allocated and made
active, and is initialized as indicated by the initialization specifiers for the
variables. When the generator exits, this area is released, and the area
associated with the previous occurrence of the generator in the calling

chain is made active.

If there is no occurrence of some generator in the calling chain,
then there is no storage area allocated for the local variables of this gene-
rator, and these variables are undefined. This fact leads to a restriction on
the calling of subgenerators. Suppose that B is a subgenerator of A, and
that B contains a global appearance of a name that is controlled by a local
declaration in A. Then B can only be called if A already appears in the
calling chain, since otherwise the global appearance will refer to an un-
defined variable.

2. Input Variable Sequences

An input variable sequence gives a sequence of names that are
declared to be input variables of the generator whose definition contains the
input variable sequence. Input variables behave in the same manner as local
variables, except that when storage is allocated for the variables upon
entrance to the generator, the variables are initially set to the input argu-
ments of the generator.

The number of arguments for a generator is determined by the
number of names in its input variable sequence. (An empty sequence in-
dicates a generator with no arguments.) When a call of the generator is in-
dicated by a compound expression, the assignment of arguments to input
variables is determined by an ordered correspondence between the input
variable sequence of the generator and the subexpression sequence of the
compound expression. Similarly, when a call of the generator is indicated
by the rightmost label of a production with no special label, the assignment
of arguments to variables is determined by an ordered correspondence
between the input variable sequence of the generator and the phrase class
names in the construction string of the production.

The restriction on the calling of subgenerators containing global
appearances of local variables also applies to subgenerators containing
global appearances of input variables.

3. Own Declarations

An own declaration gives a sequence of names, each followed by
an initialization specifier, and declares these names to be own variables of
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the generator whose definition contains the declaration. The initialization
specifiers indicate the initial values to which these own variables will be
set at the beginning of the execution of the entire COGENT program.

The own variables of a generator are assigned a single, perma-
nently allocated storage area. Thus when the calling chain contains several
occurrences of the same generator, the own variables of this generator are
the same for all occurrences, and a resetting of an own variable by one
occurrence will affect the value for all other occurrences. In addition, when
a generator exits, the values of its own variables are not lost, but remain
available to later calls of the same generator.

An own declaration may also appear in the main declaration
sequence. In this case, the names in the declaration are declared to be

universal variables, i.e., own variables of the entire program. A universal

variable may be referenced by any generator definition, or by a production
label (if its value is an appropriate generator element). Any resetting of a
universal variable is effective throughout the program.

4, Pseudoconstant Declarations

A pseudoconstant declaration gives a sequence of names and
initialization specifiers and declares each name to be a pseudoconstant
representing the value of the following initialization specifier. Any appear-
ance of a name controlled by a pseudoconstant declaration is completely
equivalent to a constant with the value represented by the pseudoconstant.
Thus a name controlled by a pseudoconstant declaration must never appear
in a context in which a constant would be meaningless, e.g., in an assign-
ment statement that assigns a value to this name.

An initialization specifier in a pseudoconstant declaration may
itself contain a pseudoconstant controlled by a previous or higher-level
declaration. Thus several pseudoconstants may be chained together to repre-
sent the same constant. A pseudoconstant declaration may be used in the
main declaration sequence to define pseudoconstants that are referenced
throughout the entire program.

5. Generator Declarations

A generator declaration gives a sequence of names and declares
each name to be a generator name, which is a type of pseudoconstant
representing a generator element. The generator declaration is similar
to the pseudoconstant declaration, except that it does not directly specify
the value of the pseudoconstants that it declares; instead, it indicates that
these values will be specified by a sequence of generator definitions immedi-
ately following the current declaration sequence.

Whenever a generator has one or more immediate subgener-
ators, the declaration sequence in its definition must include a generator
declaration giving the names of these subgenerators. Thus each sub-
generator name must appear twice, once in a generator declaration in the
declaration sequence, and once at the beginning of a generator definition in
the definition sequence following the declaration sequence. (This use of two
separate syntactic entities for declaring and defining generator names is
peculiar to COGENT. In the analogous construction in ALGOL, a single
entity, the procedure declaration, simultaneously declares that a name
represents a procedure and defines this procedure. This type of con-
struction has been avoided in COGENT to simplify the compiling process
for COGENT programs.)

Now suppose that B is an immediate subgenerator of A. Then
the name of B must be declared in the declaration sequence of A, so that
appearances of this name (with this meaning) can occur only in A or its
subgenerators. But although references to the name of B are restricted to
this region of the program, calls of B may occur from outside the region
since, for example, the generator element for B can be made the value of a
universal variable. The only restriction on calls of a subgenerator (as
opposed to references to its name) is the restriction given above on global
appearances of the names of local or input variables.

A generator declaration may be used in the main declaration
sequence to declare that certain names represent main generators. Nor-
mally this is unnecessary, since in the absence of a declaration these names
will be implicitly declared as the names of main or primitive generators.
But occasionally the programmer may wish to give to a main generator some
name that is also the name of a primitive generator. In this situation, an
implicit declaration will be ambiguous, and the name must be given in a
main generator declaration.

The general rules by which the system distinguishes between
main and primitive generator names are as follows:

a. If a name is not controlled by a declaration and does not
appear at the beginning of any main generator definition, it is taken to be a
primitive generator name. If such a name does match any of the names of
primitives available in the COGENT system, then the programmer must
supply his own machine-language subroutine for the generator.

b. If a name is not controlled by a declaration but appears at
the beginning of some main generator definition, and if the name does not
match any of the primitive names known to the system, then the name is
taken to be a main generator name.

c. If a name is controlled by a main generator declaration, it
is taken to be a main generator name, even if it matches a primitive name
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known to the system. In this case, the name must also appear at the be-
ginning of some main generator definition in the program.

d. If a name is not controlled by a declaration, and appears
at the beginning of some main generator definition, and also matches some
primitive name known to the system, then the meaning of the name is
ambiguous.

6. Identifier Declarations

The final type of declaration is the identifier declaration, which
gives a sequence of constants, each followed by an initialization specifier.
Fach constant must denote a list structure consisting of a single identifier
element; the declaration causes the association list name of this identifier
element to be initialized, when the program begins execution, to the value
indicated by the corresponding initialization specifier. If an identifier ele-
ment appears in the list structure denoted by any constant in the program,
but does not appear in any identifier declaration, then its association list

will be initialized to the dummy element when the program begins execution.

Identifier declarations describe identifier elements, rather than
names, and therefore do not control the appearances of any names in a pro-
gram. Because of this, an identifier declaration may appear in any decla-
ration sequence, including the main sequence, and its meaning is independ-
ent of its position in the program.

In general, declarations and input variable sequences are
subject to the following restrictions: Within the input variable sequence
and declaration sequence of a single generator (exclusive of its subgener-
ators), the same name must not be declared more than once. Similarly,
within the main declaration sequence, the same name must not be declared
more than once,.

J. Expressions and Assignment Statements

<{expression> ::= <name>| < constant>l< compound expression>

< compound expression> ::= <head expression>(<expression

sequence>)
<head expression> ::= {expression>

{expression sequence> ::.= <empty>|<nonempty expression

sequence>

<nonempty expression sequence> ::= <expression>|

<nonempty expression sequence> ,{expression>

<assignment statement> ::= (direct assignment statement>|
<{synthetic assignment statement)'(analytic assignment

statement>

{direct assignment statement> ::= {name> = <expression>.l

<compound expression>.

< synthetic assignment statement> ::=

<name>/=<template expression> synthesis string>.
< template expression> ::= {expression>

< synthesis string> ::= <empty>|<synthesis string >,<synthesis

item >
< synthesis item> ::= empty>|< expression>

< analytic assignment statement> ::=

<test expression> =/< template expression> {analysis string>.

{test expression> ::= {expression>

< analysis string> ::= <empty>|<.analysis string >,<{analysis item>
< analysis item> ::= <empty>|<name>

1. Expressions

Expressions are used within statements to indicate values,
which are obtained during the execution of the program by the process of
evaluating the expression. When an expression is a constant, the indicated
value is the value of the constant; when an expression is a name, the in-
dicated value is the current value of the variable represented by the name,
or the permanent value of the pseudoconstant represented by the name.

The evaluation of a compound expression causes the generator
containing the compound expression to call other generators, or to call
itself recursively. Specifically, a compound expression is evaluated as
follows:

a. The head expression and the expressions in the expression
sequence are evaluated. The order in which these evaluations are performed
is not defined and will be chosen by the COGENT programming system to

65




66

optimize the machine code compiled from the COGENT program. If the
evaluation of the head expression or any member of the expression sequence
fails, then the evaluation of the entire compound expression fails, without
evaluating further subexpressions or performing step b. If failure does not
occur, then the value of the head expression must be a generator element,
and the number of items in the expression sequence must equal the number
of input arguments for the generator indicated by this generator element.

b. The generator indicated by the value of the head expression
is called and given the values of the members of the expression sequence as
input arguments. If this generator fails, then the evaluation of the compound
expression fails. Otherwise, the result of this generator is taken as the
value of the compound expression.

2. Direct Assignment Statements

A direct assignment statement containing a name on the left and
an expression on the right is executed by evaluating the expression on the
right and assigning its value to the variable namedonthe left. (The name on
the left must not be a pseudoconstant.) If the evaluation of the expression
fails, then the statement fails without affecting the value of the left-hand
variable.

A direct as'signment statement containing only a compound ex-
pression is executed by evaluating the compound expression and ignoring
its value. If the evaluation fails, the statement fails,

3. Synthetic Assignment Statements

A synthetic assignment statement is executed as follows:

a. The template expression and all expressions in the synthesis
string are evaluated. The order of evaluation is undefined and will be chosen
to optimize code. If the evaluation of any of these expressions fails, then the
statement fails without evaluating further expressions or executing step b.

b. An instantiated copy of the value of the template expression
is formed and made the value of the variable named on the left of the state-
ment. (This name must not be a pseudoconstant.)

The instantiated copy Y of an arbitrary list structure X is de-
fined recursively as follows:

a. If X is headed by a normal element, then Y is a structure
headed by a normal element with the same production code number, followed
by the names of instantiated copies of the sublists of X.

b. If X is an identifier, number, generator, or dummy element,
then Y is the same element as X,

c. If X is a parameter element with index i, and the ith item
in the synthesis string (from left to right, counting empty items) is an ex-
pression, then Y is the value of this expression. If the ith item is empty,
then Y is the same element as X.

In any synthetic assignment statement, the number of items in
the synthesis string must always be greater than or equal to the largest
index in any parameter element of any list structure that may ever occur
as the value of the template expression.

Two properties of the synthetic assignment statement should be
noted. First, if an item in the synthesis string is empty, or if the value of
an expression in the string contains a parameter element, then the result of
the statement may contain parameter elements. When such an element
arises from an empty item in the synthesis string, then its index is the same
as the corresponding element in the template value. When such an element
arises from aparametric-valued expression in the string, then its index is
the same as the corresponding parameter in the value of this expression.

Secondly, a synthetic assignment statement may be used to
cause a parameter associated with some phrase class to be replaced by a
phrase of a different class. The result of such an operation is said to have
mixed syntax. Although structures with mixed syntax cannot be represented

by constants, their creation and use are permissible in a COGENT program.
The action of various list-processing operations on such structures is
always well-defined when the structures are considered explicitly as lists,
but, the operations can no longer be considered directly as operations upon
phrases of object language, without regard to the underlying list
representation.

4. Analytic Assignment Statements

An analytic assignment statement is executed as follows:

a. The test and template expressions are evaluated. The order
of evaluation is undefined and will be chosen to optimize code. If the evalu-
ation of either expression fails, the statement fails without evaluating
further expressions or executing step b or c.

b. The value of the test expression is compared with the value
of the template expression as described below. If the comparison fails, then
the statement fails without executing step c. If the comparison succeeds, it
will "associate" a unique list structure with each name that appears in the
analysis string.
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c. The unique list structure associated with each name in the
analysis string is made the value of the variable represented by this name,
(The names in the string must not be pseudoconstants.)

The comparison of a test value X with a template value Y is
executed as follows:

a. If Y is headed by a normal element, then the comparison
fails unless X is headed by a normal element with the same production
code number and number of components. The sublists of X are compared
with the sublists of Y, and the comparison fails if any of these subcom-
parisons fail,

b. If Y is an identifier, generator, or dummy element, then
the comparison fails unless X is the same element.

c. If Y is a number element, then the comparison fails
unless X is a number element with the same mode and value,

d. If Y is a parameter with index i, the comparison does not
fail, and if the ith item in the analysis string (from left to right, counting
empty items) is a name, then X is associated with this name.

The following restriction is imposed on analytic assignment
statements: If the ith item in the analysis string is not empty, then every
list structure that may ever occur as the value of the template expression
must contain exactly one parameter element with index i. This restriction
insures that the comparison of list structures will always associate a unique
structure with each name in the analysis string.

An analytic assignment statement with an empty analysis string
may be used to compare two list structures completely, providing that the
template structure never contains parameter elements. In particular, such
a statement may be used to compare numbers for equality.

K. Statement Labels, Control Statements, and the Flow of Control

< statement label> ::= { statement number>/
{ statement number > ::= { positive integer>
g control statement> ::= ¢ unconditional jump statement>!

< conditional jump statement>| < return statement>|

{fail statement>

< unconditional jump statement> ::= +< statement number>.

< conditional jump statement> ::=
+< statement number>UNLESS(assignment statement>|

+{statement number>IF assignment statement>
{return statement> ::= $RETURN(<« expression>).| $RETURN.
{fail statement> ::= $FAILURE,

Statement labels may be inserted at arbitrary points in a state-
ment sequence. The only restrictions on the use of these labels are:

1. A statement sequence must not contain two or more statement
labels with the same statement numbers. (Statement numbers are com-
pared as numerical values, not character strings.)

Z. Within a statement sequence, for every statement number
appearing in a jump statement, the same number must also appear in a
statement label,

3. Zero must not be used as a statement number.
A statement number is said to denote the first statement following the
unique label containing this number. If no statement follows this label, the

number denotes the end of the statement sequence.

The control statements serve two purposes: The unconditional and
conditional jump statements cause control jumps between statements within

the same statement sequence (i.e., in the same generator). The return

and fail statements cause the generator containing these statements to exit.
The exact behavior of the control statements is best described by giving the
rules that govern the flow of control through a statement sequence:

1. After a generator has been entered and its local and input
variables have been initialized, control passes to the first statement of its
statement sequence.

2. When control passes to an assignment statement that is not
imbedded in a conditional jump statement, the statement is executed, and
if it does not fail, control passes to the next statement in sequence. If the
assignment statement fails, the entire generator containing the statement
fails without further execution.

3. When control passes to an unconditional jump statement, it is
passed on to the statement denoted by the statement number in the jump
statement,
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4, When control passes to a conditional jump statement containing
UNLESS, the assignment statement imbedded in the jump statement is exe-
cuted. If the assignment statement fails, control passes to the statement
denoted by the statement number in the jump statement. If the assignment
statement does not fail, control passes to the next statement in sequence.

5. When control passes to a conditional jump statement containing
IF, the assignment statement imbedded in the jump statement is executed.
If the assignment statement does not fail, control passes to the statement
denoted by the statement number in the jump statement. If the assignment
statement fails, control passes to the next statement in sequence.

6. When control passes to a return statement containing an ex-
pression, the expression is evaluated. If the evaluation does not fail, the
generator containing the statement returns with the value of the expression
as its result. If the evaluation fails, the generator fails without further

execution.

7. When control passes to a return statement that does not contain
an expression, the generator containing the statement returns with the
dummy element as its result.

8. When control passes to a fail statement, the generator contain-
ing the statement fails without further execution.

9. If control passes to the end of a statement sequence, either
from the last statement in the sequence or by means of a jump to a label
after the last statement, then the generator containing the statement
sequence returns with the dummy element as its result.

CHAPTER III
PRIMITIVE GENERATORS AND INTERNAL VARIABLES

This chapter describes the primitive generators available in the
initial version of the COGENT system. It is expected that additional primi-
tives will be added to the system in the future. In addition, the programmer
may introduce his own primitives by supplying the appropriate machine-
language subroutines.

Many of the primitives described in this chapter have restrictions
on the type or nature of their input arguments. If these restrictions are
violated, these primitives may cause the entire program to terminate, or
they may have an unpredictable effect on the course of the program.

A. Internal Variables

Internal variables provide communication between primitive genera-
tors. They are similar to own variables in that their storage is permanently
allocated (i.e., never lost, or reallocated during recursion), and they are
initialized at the beginning of the execution of the entire program. The dis-
tinctive characteristic of internal variables is that their usage is fixed by
the system rather than specified by the user. Furthermore, internal var-
iables cannot be referenced directly by names in generator definitions. To
emphasize the latter property, we will denote internal variables in this
chapter by underlined uncapitalized names such as rem, which obviously
cannot appear as names in a COGENT program.

Each internal variable is associated with one or more primitive
generators which set or evaluate it in the course of their operation. For
example, rem is set by DIVIDE(X, Y) to the remainder of dividing X by Y
(providing X and Y are integers). However, for each internal variable there
are also two primitive generators whose only purpose is to set or evaluate
the internal variable. Thus SETIVREM(X) is a generator which gives rem
the value X, and IVREM() is a generator whose result is the value of rem.
These standard setting and evaluating generators provide a facility for de-
fined (programmer—written) generators to communicate with the internal
variables, despite their inability to reference these variables directly.

Each internal variable has a standard initial value to which it is set
when a program begins execution. Since the operation of many primitives
is conditioned by the values of internal variables, the standard initial values
specify standard modes of operation for the primitives. For example, when
the primitive generator ALIST finds an association list which is the dummy
element, the value of the internal variable dal is taken to specify a generator
to be called. Since the initial value of dal is a generator element pointing to
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the primitive generator FAILURE, the standard mode of operation is for
ALIST to fail upon encountering a dummy association list. But the pro-
grammer may introduce another mode of response by defining his own gen-
erator and setting dal to a generator element referring to this generator.

Each internal variable also has a limited set of legal values. The
primitive generators for setting the internal variables must not be used to
set a variable to an illegal value.

1. Properties of the Internal Variables

The following list gives the name, usage, initial value, and legal
values of all internal variables. For each variable, all primitives (except
the standard setting and evaluating primitives) that affect or use the var-
iable are indicated. (We will frequently say that an internal variable speci-
fies a generator or has a generator as its initial value; in such situations,
the actual value is a generator element denoting the appropriate generator.)

rem (remainder). When the primitive generator DIVIDE(X, Y) is executed
and both X and Y are integer number elements, then this internal variable
is set to the remainder of dividing X by Y.

Initial value: 0 Legal values: any list structure.
Reset by: DIVIDE.
dal (dummy association list). This variable specifies a no-argument gen-

erator which is called by ALIST whenever ALIST encounters an association
list name that is a dummy element.

Initial value: FAILURE. Legal values: generator elements.
Used by: ALIST.
chr (character receiver). This variable specifies a one-argument generator

which accepts output codes for object characters during character-scanning
operations.

Initial value: FAILURE. Legal values: generator elements.

Used by: NORMSCN, IDENTSCN, FDINTSCN, FOINTSCN, XDINTSCN,
XOINTSCN.

Reset but restored by: STANDSCN.
lsr (list receiver). This variable specifies a one-argument generator which
accepts list names of sublists during character-scanning operations.

Initial value: STNDSCNI. Legal values: generator elements.

Used by: NORMSCN.

Reset but restored by: STANDSCN.
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nir (negative integer receiver). This variable specifies a one-argument
generator which accepts negative integer number elements during character-
scanning operations.

Initial value: FAILURE. Legal values: generator elements.

Used by: FDINTSCN, FOINTSCN, XDINTSCN, XOINTSCN.

fdl (field length). This variable specifies a field length (positive integer
number element) for use during the character scanning of fixed-field
integers.

Initial value: 0 Legal values: integers, 0 = fdl = 1023)o.

Used by: XDINTSCN, XOINTSCN.

lzc (leading zero code). This variable specifies an output code (positive
integer number element) to represent leading zeros in the character scan-
ning of fixed-field integers.

Initial value: 0 Legal values: integers, 0 = lzc = 373,.

Used by: XDINTSCN, XOINTSCN.

inr (integer receiver). This variable specifies a one-argument generator
which accepts integer number elements during character-scanning
operations.

Initial value: FDINTSCN. Legal values: generator elements.
Used by: STNDSCNI.
flr (floating-point receiver). This variable specifies a one-argument gen-

erator which accepts floating-point number elements during character-
scanning operations.

Initial value: FAILURE. Legal values: generator elements.

Used by: STNDSCNI.

isn (internal scanner). This variable specifies a two-argument generator
to be used for character scanning during the production of identifiers and
numbers.

Initial value: STANDSCN. Legal values: generator elements.
Used by: IDENT, CIDENT, DECCON, OCTCON, FLOATCON.
ial (initial association list). This internal variable gives the value to be
assigned to the association list names of newly created identifier elements.

It is not only used by the primitive generator IDENT, but also by the syntax
analyzer when controlled by a $IDENT,n/ special label.

Initial value: dummy element. Legal values: any list structure.

Used by: IDENT, syntax analyzer.
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por (P-medium overflow receiver). This variable specifies a one-argument
Eé_nerator which is called by PUTP when an attempt is made to place an
output code larger than 77 in the current P-medium (printed output medium)
record image.

Initial value: FAILURE. Legal values: generator elements.

Used by: PUTP, STANDPMC, PUTPC.

pmr (P-medium margin). This variable specifies the first character posi-
tion in the P-medium record image to the right of the field in which charac-

ters are to be placed.

Initial value: 1204. Legal values: integers, 1 = pmr = 136,0.

Used by: PUTP, STANDPMC, PUTPC.

pin (P-medium index). This variable specifies the character position in
the current P-medium record image where the next character is to be
placed by PUTP.

Initial value: 1 Legal values: integers, 1 = pin = pmr.

Used by: PUTP, STANDPMC, PUTPC.
Reset by: PUTP, STANDPMC, PUTPC, OUTP.

pmc (P-medium margin controller). This variable specifies a one-
argument generator which is called by PUTP when pin = pmr.

Initial value: STANDPMC. Legal values: generator elements.

Used by: PUTP, STANDPMC, PUTPC.

pno (P-medium logical unit number). This variable gives an integer number
element indicating the logical unit number (as recognized by the 3600 control
system, SCOPE) of the output device used for the P-medium and also used
for comments and error messages by various system routines.

Initial value: 619 (Standard SCOPE output tape).

Used by: OUTP, STANDPMC, DUMPV, DUMP1, DUMPALL, various
system routines which output messages. Legal values:
integers, 1 = pno = 80 .

cor (C-medium overflow receiver). This variable specifies a one-argument
generator which is called by PUTC when an attempt is made to place an
output code larger than 77g in the current C-medium (card output medium)

record image.
Initial value: FAILURE. Legal values: generator elements.

Used by: PUTC, STANDCMC, PUTPC.

cmr (C-medium margin). This variable specifies the first character posi-
tion in the C-medium record image to the right of the field in which charac-
ters are to be placed.

Initial value: 73. Legal values: integers, 1 = cmr = 81,.

Used by: PUTC, STANDCMC, PUTPC.

cin (C-medium index). This variable specifies the character position in
the current C-medium record image where the next character is to be
placed by PUTC.

Initial value: 1 Legal values: integers, 1 = cin = cmr.

Used by: PUTC, STANDCMC, PUTPC.
Reset by: PUTC, STANDCMC, PUTPC, OUTC.

cmc (C-medium margin controller). This variable specifies a one-
argument generator which is called by PUTC when cin = cmr.

Initial value: STANDCMUC. Legal values: generator elements.
Used by: PUTC, STANDCMC, PUTPC.
cno (C-medium logical unit number). This variable gives an integer num-

ber element indicating the logical unit number (as recognized by SCOPE) of
the output device used for the C-medium.

Initial value: 62,4 (Standard SCOPE punched output tape).
Used by: OUTC, STANDCMC. Legal values: integers,

l = cno = 8010»

bmr (B-medium margin). This variable specifies the first bit position in
the B-medium (Binary card output medium) record image to the right of the
field in which binary numbers are to be placed.

Initial value: 1 Legal values: integers, 1 < bmr =< 961,,.

Used by: PUTB.

bwl (B-medium word length). This variable specifies the number of bits
to be used for the numbers being written in the current B-medium record
image.

Initial value: 1 Legal values: integers, 1 = bwl = 960,,.

Used by: PUTB.
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bin (B-medium index). This variable specifies the bit position in the cur-

rent B-medium record image of the high-order bit of the next number to

be written in this image by PUTB.

Initial value: 1 Legal values: integers, 1 = bin = bmr.

Used by: PUTB.
Reset by: PUTB, OUTB.
bmc (B-medium margin controller). This variable specifies a one-

argument generator to be called by PUTB when bin + bwl > bmr, i.e., when
the number to be written in the B-medium record image runs beyond the

right margin.
Initial value: FAILURE. Legal values: generator elements.

Used by: PUTB.

This variable gives an integer number

bno (B-medium logical unit number).
ele: ) of the

element indicating the logical unit number (as recognized by SCOPE
output device used for the B-medium.

Initial value: 62, (Standard SCOPE punched output tape).
Used by: OUTB. Legal values: integers, 1 = bno = 80 0-

This internal variable is not used

ino (input medium logical unit number).
by (via the

by a primitive generator, but is referenced by the syntax analyzer -
input editor). It gives an integer number element indicating the logical

unit number of the input device from which the analyzer reads character
strings to be parsed. When the value of ino is changed, the next record
read by the analyzer will be obtained from a new input device, but any char-
acters remaining in the current input record will be processed before the

next record is read.
Initial value: 60,, (Standard SCOPE input tape).

Used by: Input editor. Legal values: integers, 1 = ino = 80jo.

gol (goal). This internal variable is not used by a primitive generator, but
s evaluated whenever the syntax analyzer is called on the main level of ‘Fhe
COGENT program. If the value of golis i > 0, then the syntax a.nalyzerils
called to search for the goal indicated by the ith goal specifier in ’chf:e pri-
mary syntax description; but if the value of gol is zero, then the entire

program terminates.

Initial value: 1 Legal values: integers, 0 = gﬂl = 1023p.

Used by: Syntax analyzer.

2.

Standard Primitives for the Internal Variables

The following are the standard primitive generators for setting
internal variables.

SETIVREM(X)
SETIVDAL(X)
SETIVCHR (X)
SETIVLSR(X)
SETIVNIR (X)
SETIVFDL(X)
SETIVLZC(X)
SETIVINR(X)
SETIVFLR(X)
SETIVISN(X)
SETIVIAL(X)
SETIVPOR (X)
SETIVPMR (X)
SETIVPIN(X)
SETIVPMC (X)
SETIVPNO(X)
SETIVCOR (X)
SETIVCMR (X)
SETIVCIN(X)
SETIVCMC (X)
SETIVCNO(X)
SETIVBMR (X)
SETIVBWL(X)
SETIVBIN(X)
SETIVBMC(X)
SETIVBNO(X)
SETIVINO(X)
SETIVGOL(X)

sets

sets

sets

rem.

dal.

chr.

sets

sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets

sets

nir.
fdl.
lzc.
inr.
flr.
isn.
ial.
por.

pmr.

pin.

pmc.

pno.

cor.

cno.
bmr.
bwl.
bin.

bmec.

bno.
ino.

gol.
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Each of these generators accepts a single argument X and sets the appro-
priate internal variable to the value of X. The dummy element is returned
as the result of these generators. These generators must not be used to
assign illegal values to internal variables.

The following are the standard primitives for evaluating internal
variables:

IVREM( ) evaluates rem.

IVDAL( ) evaluates dal.
IVCHR( ) evaluates chr.
IVLSR( ) evaluates lsr.
IVNIR( ) evaluates nir.
IVFDL( ) evaluates fdl.
IVLZC( ) evaluates lzc.
IVINR( ) evaluates inr.
IVFLR( ) evaluates flr.
IVISN( ) evaluates isn.
IVIAL( ) evaluates ial.
IVPOR( ) evaluates por.

IVPMR( ) evaluates pmr.

IVPIN( ) evaluates pin.
IVPMC( ) evaluates pmc.

IVPNO( ) evaluates pno.
IVCOR( ) evaluates cor.
IVCMR( ) evaluates cmr.
IVCIN( ) evaluates cin.
IVCMC( ) evaluates cmc.
IVCNO( ) evaluates cno.
IVBMR( ) evaluates bmr.
IVBWL( ) evaluates bwl.
IVBIN( ) evaluates bin.

IVBMC( ) evaluates bmc.

IVBNO( ) evaluates bno.
IVINO( ) evaluates ino.
IVGOL( ) evaluates gol.

Each of these generators has no input arguments, and returns as its result
the current value of the appropriate internal variable.

B. Testing Primitives

Each of these primitive generators performs a test upon its input
arguments and fails unless the test is satisfied. If the test is satisfied, the
primitive returns the dummy element as its result. All the testing primi-
tives except LARGER accept any list structures as input arguments.

NORMTEST(X). Fails unless X is a normal list element.
IDENTEST(X). Fails unless X is an identifier element.

NUMTEST (X). Fails unless X is a number element.
PARATEST(X). Fails unless X is a parameter element.
GENTEST(X). Fails unless X is a generator element.
DUMTEST(X). Fails unless X is the dummy element.

FIXTEST(X). Fails unless X is an integer number element.
FLOATEST(X). Fails unless X is a floating-point number element.

POSTEST(X). Fails unless X is a positive (integer or floating—point) number
element. An integer or floating-point zero is always positive.

ZEROTEST(X). Fails unless X is an integer or floating-point number ele-
ment with the value zero.

NEGTEST(X). Fails unless X is a negative (integer or floating—point) num-
ber element.

EQLIT(X,Y). Fails unless X and Y are the same list name, i.e., unless they
name identical (not meyrely similar) list structures.

LARGER(X,Y). X and Y must both be number elements. LARGER {fails
unless the value of X is larger than the value of Y. If both X and Y are in-
tegers, then they are compared as integers. If either X or Y is a floating -
point number, the other argument is converted to floating-point if necessary,
and the comparison is performed in floating-point. Integer-to-floating-point
conversion is discussed in Section E below on arithmetic primitives.
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C. List-handling Primitives

PRODCODE(X). X must be the name of a normal list element. PRODCODE
returns an integer number element giving the production code number con-
tained in this normal element.

SIZE(X). X must be the name of a normal element. SIZE returns an integer
number element giving the number of name-components (components other
than the production code number) in this normal element. X must not have
more than 1023;) name-components.

SUBLIST(X,N). X must be the name of a normal element with at least one
name-component, and N must be an integer element such that 1 = N = 1023,
and such that N is smaller than or equal to the number of name-components
in X. SUBLIST returns the name which is the Nth name-component in the
element named by X.

SUBLIST1(X). Equivalent to SUBLIST(X,1).
SUBLIST2(X). Equivalent to SUBLIST(X,2).

REPLACE(X,Y,N). X must be the name of a normal element with at least
one name-component, and N must be an integer element such that

1 =N = 10239 and such that N is smaller than or equal to the number of
name-components in X. Y may be any list structure. REPLACE alters the
normal element named by X by replacing the contents of its Nth name-

component by the value of Y. The result of REPLACE is the dummy element.

REPLACI1(X,Y). Equivalent to REPLACE(X,Y,1).
REPLAC2(X,Y). Equivalent to REPLACE(X,Y,2).

The REPLACE primitives are unique in that they alter an existing normal
element, as opposed to creating new elements. Three consequences of this
fact should be kept in mind when using these primitives:

1.  The normal element altered by REPLACE may be a member of
several list structures, each of which may be the value of several variables.
Thus REPLACE may effectively alter the values of variables that are not
its arguments by altering the structures named by these variables.

2. REPLACE may be used to create cyclic list structures, i.e.,
structures that are sublists of themselves. Cyclic structures are permis-
sible in COGENT but must be used with caution. In particular, the processes
of list synthesis and analysis and of character scanning may never terminate
when applied to cyclic structures. On the other hand, the storage-recovery
algorithm is capable of handling such structures, and the primitive dumping
generators may be used to print them out.

3. The REPLACE primitives must never be used to alter list struc-
tures that are the values of constants. The violation of this rule will have
unpredictable consequences.
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PINDEX(X). X must be a parameter element. PINDEX returns an integer
number element giving the value of the index of X.

D. Dummy Primitives

The action of each of these generators is trivial. Except for NOP,
these generators may have any number of arguments (including zero), and
their effect is independent of their arguments.

FAILURE. Always fails.
NORESULT. Always returns the dummy element as its result.
ZERO. Always returns an integer zero as its result.

NOP. Must have one or more input arguments. It always returns the value
of its last (rightmost) input argument.

E. Arithmetic Primitives

The input arguments of each of these generators must be number
elements, and the result will also be a number element. Except for
POWER?2 and POWER 10, if all of the input arguments are integers, then
the generator will perform an integer arithmetic operation and return an
integer result, but if any argument is a floating -point number, thejn any
other argument that is an integer will be converted to floating-point, a .
floating-point operation will be performed, and a floating-point result will

be returned.

ADD(X,Y). Returns X + Y.
SUB(X,Y). Returns X - Y.
INCREASE(X). Returns X + 1.
DECREASE(X). Returns X - 1.
NEG(X). Returns -X.

ABS(X). Returns |X|

MULT(X,Y). Returns X x Y.

DIVIDE(X,Y). Returns X/Y. If X and Y are integers, the internal variable
rem will be set to an integer number element giving the remainder of
dividing X by Y. The remainder will have the same sign as X (except that

a remainder of zero will always be positive) and will satisfy 0 = | rem] < Iyl
and X = (X/Y) x Y +rem. If Y is an integer or floating-point zero, DIVIDE

will fail.

POWERZ(X,N). X may be an arbitrary number element, but N must .be an
integer such that -1023 = N = 1023. POWER2 will return X x 2N, with the
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same mode as X. If X is an integer and N is negative, the sign of the result
will be the sign of X (except that zero will always be positive), and the mag-
nitude of the result will be the largest integer smaller than or equal to

ix x 2N|.

POWERI10(X,N). X must be a floating -point number element, and N must be
an integer such that -1023 = N = 1023. POWERI10 will return a floating-
point number element representing X x 10N,

The following remarks pertain to all arithmetic primitives as well as to the
integer-to-floating-point conversions that may be performed by other primi-
tives such as LARGER or FLOATCON:

1. If exponent underflow occurs while a primitive is executing a
floating -point arithmetic operation, the result of the operation is taken to be
a floating-point zero.

2. If exponent overflow occurs while a primitive is executing a
floating-point arithmetic operation or an integer-to-floating-point conver-
sion, the primitive will fail.

3. If, during an integer-to-floating-point conversion, the integer
is too large to have an exact floating-point representation, it will be rounded.

4. There is no negative zero in COGENT, i.e., both the integer zero
and the floating-point zero are unique and positive. (However, the floating-
point zero is distinct from the integer zero.)

F. Identifier-handling Primitives

SETA(,X). I must be an identifier element. The association list name of
I is set to the value of X. The dummy element is returned.

ALIST(I). I must be an identifier element. The result of ALIST is the
association list name contained in I, unless this name is the dummy element.
If it is the dummy element, then the no-argument generator specified by the
internal variable dal is called. If this generator fails, then ALIST {fails;
otherwise the result of this generator is returned as the result of ALIST.
Since the initial value of dal is FAILURE, ALIST will fail upon encountering
a dummy association list, unless the value of dal is reset.

TABLENO(I). I must be an identifier element. TABLENO returns an integer
number element giving the table-number component of I. Normally this
number indicates the identifier table containing the identifier, but a table
number of zero indicates an identifier that is not in any table.

FIRSTID(N). N must be a positive integer number element denoting an iden-
tifier table. FIRSTID returns the first identifier element in this table. If
identifier table N is empty, or if N = 0, FIRSTID fails.
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NEXTID(I). I must be an identifier element. NEXTID returns the next iden-
tifier element in the same table as I. If I is the last element in the table, or
if I has a table number of zero, then NEXTID fails.

FIRSTID and NEXTID allow the programming of searches through an
identifier table. For example, the following statements will search identifier
table one for an identifier element with an integer zero as its association
list:

+2 UNLESS X = FIRSTID(1).
1/+3 IF ALIST(X) =/ 0.

+1 IF X = NEXTID(X).

2/ ...

If the desired identifier element is found, control will go to statement 3,
with the desired element as the value of X. Otherwise control will go to

statement 2.

It should be emphasized that the ordering of an identifier table cannot
be controlled by the programmer. In particular, if an identifier element in
some table is created or erased while the same table is being searched, it
is unpredictable whether the creation or erasure will occur before or after
the current position of the search.

ERASID(I).

ERASIT(N). These primitives are used to erase identifier elements, i.e., to
delete them from identifier tables. The process of erasing an identifier
element is defined as follows:

1. If the element has a table number of zero, no action is taken.

2. If the element is a constant identifier element, i.e., if it appears
within the list structure denoted by any constant in the COGENT program,
no action is taken. (Constant identifier elements cannot be deleted from
tables.)

3. If the element has a nonzero table number and is not a constant
identifier element, then it is removed from the identifier table that contains
it, and its table number component is set to zero.

Note that when an element is erased it does not vanish, but simply

becomes a tableless identifier.
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The primitive ERASID(1) accepts an identifier element I and erases
it, as defined above. The dummy element is returned.

The primitive ERASIT(N) accepts a positive number ‘elerr?ent N de-
noting an identifier table and erases all identifier elements 1in this tabl.e.
The dummy element is returned. If N = O, ERASIT has -no effect; but if
N 7( 0, all identifiers in the table except constant identifiers are deleted.

G. Character-scanning Primitives

In general, character scanning is a process which reduces a list
structure to a string of object characters, as represented by a sequence of
output codes. Character scanning serves three purposes in COGENT:

1. To produce a string of object characters to be written on the

output media.

2. In the primitive generators IDENT and CIDENT, to produce a

character string for an identifier element.

3. In the primitive generators DECCON, OCTCON, and FLOATCON,
to produce a character string to be converted into a number element.

At first, it would appear that the reduction of an arbitrary list struc-
ture to a character string is completely defined by the total set of produc-

tions. But an arbitrary list structure may contain nonnormal elements

such as number elements, whose conver sion into characters is not defined

by the productions. Thus the process of character scanning requires the
establishment of certain conventions regarding the reduction of nonnormal

elements.

These conventions may be specified by the programmer in several

ways. Most simply, he may use the character-scanning primitives
STANDSCN or STNDSCN1, whose operation assumes a standard set of con-
ventions. If these standard conventions are undesirable, they may be altered
by resetting the internal variables inr and flr which determin.e the treat'me-nt
of number elements by STANDSCN and STNDSCN1. Finally, if these primi-
tives cannot be altered to perform the desired scan, the programmer maY.
replace them by his own scanning generator, written in ter1:ns of more basic
scanning primitives. If such a special scanning generator 1s made th.e
value of the internal variable isn, it will be used for character scanning by

the primitive generators that create identifiers and numbers.

In general, as a primitive scanning generator produces a sequence
of output codes, it communicates each code by calling another generator
called the character receiver, and giving the output code to this generator

as a single integer argument. Thus a scanning primitive must always be
informed of the character receiver it is to use. Some of the primitives
accept a generator element indicating the character receiver as one of their
input arguments, but most of the primitives obtain their character receiver
as the value of the internal variable chr.

1. Basic Character-scanning Primitives

We first discuss the basic character-scanning primitives. Each
of these generators processes a single list element and sends the resulting
character codes to a character receiver. The generator NORMSCN, which
processes a normal element, also calls a list receiver to process sublists
of the normal element.

NORMSCN(X). X must be a normal list element. NORMSCN examines the
production code number of this element and obtains from the character-
scanning table the production denoted by this code number. It then sequences
through the construction string of this production, from left to right. When
an object character representative is encountered in the construction string,
the generator that is the value of the internal variable chr is called and
given as its single argument the output code for the character representative
(as an integer number element). When the ith phrase class name is en-
countered in the construction string, the generator that is the value of lsr
(list receiver) is called and given the ith sublist of X as its single argument.

If any of the generators called by NORMSCN fails, then
NORMSCN fails without further execution. Otherwise NORMSCN returns
the result of the last generator it calls or, if it does not call any generator,
the dummy element.

The character-scanning table used by NORMSCN is compiled
from the total set of productions and gives an encoding of the construction
string of each production. It is not affected by labels, special labels, or
forcing markers.

IDENTSCN(X). X must be an identifier element. IDENTSCN sequences
through the character string component in this identifier element, from left
to right. For each character in the string, the generator that is the value
of the internal variable chr is called and given as its single argument the
output code for the character (as an integer number element).

The result of IDENTSCN is the dummy element. If any call of
the character receiver fails, then IDENTSCN fails without further execution.

FDINTSCN(X). (free field decimal integer scan). X must be an integer
number element. If X is negative, then the generator that is the value of
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the internal variable nir (negative integer receiver) is called and given X as
its single argument. When this generator fails or returns a result,
FDINTSCN fails or returns the same result without further execution. (The
initial value of nir is the primitive generator FAILURE.)

If X is positive, FDINTSCN constructs a digit string giving a
decimal representation of the integer X. The length of this string will de-
pend on X and will be such that the leftmost digit is nonzero unless X is
zero, in which case the string will be the single digit zero. FDINTSCN then
sequences through this string from left to right. For each digit, the gen-
erator that is the value of chr is called and given the output code for the
digit (as an integer number element). The output codes are taken as the
codes specified by the character definitions for the object character

representatives 0, 1, ..., 9.

If X is positive and the character receiver does not fail, then
FDINTSCN will return the dummy element as its result. If the character
receiver fails, FDINTSCN fails without further execution.

FOINTSCN(X). (free field octal integer scan). This generator is identical
to FDINTSCN, except that an octal, rather than decimal, repre sentation is
produced.

XDINTSCN(X). (fixed field decimal integer scan). X must be an integer
number element. If X is negative, then the generator that is the value of
the internal variable nir is called and given X as its single argument.
When this generator fails or returns a result, XDINTSCN fails or returns
the same result without further execution. (The initial value of nir is the
primitive generator FAILURE.)

If X is positive, XDINTSCN constructs a digit string giving a
decimal representation of the integer X in which exactly n digits appear,
where n is the value of the internal variable fdl (field length). (The initial
value of fdl is zero, so that fdl should be reset to a positive integer number
element before calling XDINTSCN.) If X is too large to be represented by
n digits, i.e., if X is larger than 102 - 1 (or if fdl = 0), then XDINTSCN
fails without further execution. Otherwise, XDINTSCN sequences through
the digit string from left to right. For each digit, the generator that is the
value of chr is called and given the appropriate output code (as an integer

number element).

The output codes are taken as the codes specified by the char-
acter definitions for the object character representatives 0, 1, ..., 9, except
that all leading zeros are replaced by the output code that is the value of
the internal variable lzc (leading zero code), whose initial value is zero.

A zero digit is defined to be a leading zero if it appears to the left of the
leftmost nonzero digit in the string. (When X is zero, all digits except the
rightmost in the string are leading.)
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If the character receiver fails, XDINTSCN {fails without further
execution. If XDINTSCN does not fail, it returns the dummy element.

XOINTSCN(X). (fixed field octal integer scan). This generator is identical
to XDINTSCN, except that an octal, rather than decimal, representation is
produced. The largest representable integer is 87 - 1.

DFLTSCNI(X,N). (decimal floating-point number scan). X must be a
positive, nonzero, floating-point number element. N must be an integer
number element such that 1 = N = 28. DFLTSCNI produces a representation
of the value of X in the form: ‘

X = fx 10€,

where -308 =e = 308, 1/10 =f < 1, and f is an N-digit decimal fraction:
f = .4if,... IN

Rounding is used in producing f.

The result of DFLTSCNI1 is an integer number element giving
the value of e. The digits f; ... fiy are not passed on to a character receiver,
but are placed in a storage buffer region which may be accessed by the gen-
erator FLTSCNZ.

OFLTSCNI1(X,N). (octal floating-point number scan). This generator is
similar to DELTSCNI1 except that an octal representation of X is produced.
This representation has the form

X = f x 2%,

where -1023,9 = e < 1023, 1/2 = f < 1, and f is an N-digit octal fraction.

Rounding is used in producing f, unless N = 28, in which case the repre-
sentation is exact.

FLTSCN2 (PC, CR,PR). This generator produces the digits left in the
storage buffer region by the last execution of DFLTSCNI or OFLTSCNI.
PC must be an integer number element such that 0 = PC = N, where N is
the number of digits left in the buffer (i.e., the second argument given to
DFLTSCNI1 or OFLTSCNI1 when it was previously called). CR must be a
character-receiving generator, and PR must be a generator with no
arguments.

FLTSCN2 first calls the character receiver CR the number of
times specified by the integer PC, supplying successively as input argu-
ments the digits f; ... fpc (as represented by the output codes specified by
the character definitions for the object character representatives 0, 1, ..., 9).
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Next, FLTSCN2 calls the no-argument generator PR. Then FLTSCN2 again

calls CR repeatedly, supplying the digits fpcy,, ..., f)y- If the generator CR
or PR fails, then FLTSCN2 fails without further execution. Otherwise,
FLTSCN2 returns the dummy element.

Note that the character receiver used by FLTSCN2 is specified
by the input argument CR, rather than by an internal variable. The purpose
of calling the generator indicated by PR is to allow a decimal point to be in-
serted in the character string after the PCth digit.

FLTSCNZ2 cannot be used recursively; i.e., the generators
specified by CR and PR must not call FLTSCN2 (or DFLTSCNI1 or
OFLTSCNI1) directly or indirectly.

N3600SCN(X, CR, IR). (3600 number scan). This generator is intended for
use when the output of a COGENT program is itself a 3600 program using
the same internal number representation as the COGENT program. X must
be a number element, CR must be a character-receiving generator, and

IR must be a generator with no input arguments.

If X is represented by a literal list name, j.e., if X is an integer
between -1023,9 and 1023,y inclusive, then N3600SCN fails. Otherwise,
N3600SCN sequences through the machine words of the element X, as it is
actually represented in storage. For each word,

a. The generator that is the value of IR is called.
b. The generator that is the value of CR is called 16, times,
and given a sequence of digit output codes which form a positive octal in-

teger equal to the actual contents of the machine word.

If CR or IR fails, then N3600SCN fails without further execution.
Otherwise, N3600SCN returns the dummy element.

2. Higher-level Character-scanning Primitives

We now consider the standard character-scanning primitives
STANDSCN and STNDSCN1, which reduce an entire list structure to a char-
acter string, using standard conventions for the handling of nonnormal
elements:

STNDSCN1(X). This primitive is exactly equivalent to a generator with the
following definition:

$GENERATOR STNDSCNI1((X)

+1 UNLESS NORMTEST(X). $RETURN(NORMSCN(X)).

1/ +2 UNLESS IDENTEST(X). $RETURN(IDENTSCN(X)).
2/ +3 UNLESS FIXTEST (X). $RETURN(IVINR ()(X)).
3/ FLOATEST(X). $RETURN(IVFLR()(X)). ).

The purpose of STNDSCNI1 is to convert an entire list structure X into a
character string and to pass the output code for each character in this string
onto the character-receiving generator specified by the internal variable chr.
In normal usage, it is assumed that whenever STNDSCNI1 is called, the value
of the internal variable lsr, which specifies a list receiver for the primitive
NORMSCN, will be a generator element denoting STNDSCNI1 itself (such an
element is the initial value of _l_§£)

Assuming that STNDSCNI1 is the value of lsr, then STNDSCN1
will call itself recursively (through NORMSCN) to process sublists of its
arguments. In this case, the sequence of output codes X' produced by
STNDSCN1 when applied to a list structure X may be defined recursively
as follows:

a. If X is headed by a normal list element, and S is the con-
struction string of the production denoted by the code number in this ele-
ment, then X' is obtained from S by replacing each object character
representative by its output code, and replacing each phrase class name
by the sequence of output codes produced from the corresponding sublist
of X.

b. If X is an identifier element, then X' is the sequence of out-
put codes in the character-string component of X.

c. If X is an integer number element, X' is the sequence of
output codes produced by calling the generator that is the value of the in-
ternal variable inr (integer receiver) and giving this generator X as its
single argument. If this generator fails, then STNDSCNI fails.

The initial value of inr is the primitive generator
FDINTSCN, and the initial value of nir (used by FDINTSCN) is the primitive
generator FAILURE. Thus if these internal variables are not altered, posi-
tive integer elements in the list structure given to STNDSCNI1 will be con-
verted into free-field decimal digit strings, while the occurrence of any
negative integer element will cause STNDSCNI1 to fail.

d. If X is a floating-point number element, X' is the sequence
of output codes produced by calling the generator that is the value of the
internal variable flr (floating-point receiver), and giving this generator X
as its single argument. If this generator fails, then STNDSCNI fails.
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The initial value of flr is the primitive generator FAILURE.
Thus if this internal variable is not altered, the occurrence of any floating-
point number element in the list structure given to STNDSCNI1 will cause
STNDSCNI1 to fail.

e. If a parameter, generator, or dummy element occurs in the
list structure given to STNDSCNI1, then STNDSCNI1 will fail.

Essentially, the programmer may alter the response of
STNDSCN]1 to number elements by changing the values of inr, flr, or other
internal variables. In particular, he may define his own generators for
scanning numbers and set the appropriate internal variables to generator
elements which refer to these generators.

STANDSCN(X, CR). This primitive is exactly equivalent to a generator with
the following definition:

$GENERATOR STANDSCN((X, CR) $LOCAL CHRSAVE, LSRSAVE.
CHRSAVE = IVCHR( ). SETIVCHR(CR).

LSRSAVE = IVLSR( ). SETIVLSR(STNDSCN1).

+1 UNLESS STNDSCN1(X).

SETIVCHR(CHRSAVE). SETIVLSR(LSRSAVE). $RETURN.

1/ SETIVCHR(CHRSAVE). SETIVLSR(LSRSAVE). $FAILURE. ).

The action of STANDSCN is identical to STNDSCN1, except that the character
receiver is specified by a second input variable instead of the internal
variable chr, and the value of the internal variable lsr does not need to be
set up before calling STANDSCN. The response of STANDSCN to number
elements may be altered by resetting internal variables in the same manner
as with STNDSCNI.

It should be noted that STANDSCN alters the values of the in-
ternal variables chr and lsr, but always restores these variables before
exiting, even if failure occurs.

A generator element denoting STANDSCN is the initial value of
the internal variable isn (internal scanner), which specifies the scanning
generator to be used by the primitives IDENT, CIDENT, DECCON, OCTCON,
and FLLOATCON while converting list structures into identifiers or numbers.
The programmer may change the value of isn to denote a scanning generator
which he has written himself, in order to change the scanning used to pro-
duce identifiers and numbers. Such a scanning generator must accept two
arguments (as does STANDSCN): the list to be scanned, and a generator
element denoting the character receiver to be used.
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3. Examples of Character Scanning

We give two examples to illustrate the use of the primitive
character-scanning generators. As the first example, we assume that it is
desired to extend the standard scanning conventions to allow the scanning of
negative and floating-point numbers. These quantities are to be reduced to
character strings as follows:

a. A positive nonzero floating-point number X is to be reduced
to a string of the form

f.fffffff + eee

where f and e are decimal numbers such that X = f x 10€¢ and 1 ={ < 10.
A zero floating-point number is to be reduced to the string "0.0".

b. A negative integer or floating-point number X is to be re-
duced to a string of the form

(-....)
where the dots represent the reduction of the magnitude of X.

The following generator definition defines a generator to scan
floating-point numbers. This generator accepts a single argument, which
must be a floating-point number element, and passes the resulting charac-
ters to the character receiver specified by the internal variable chr. (We
assume that 335, 745, 404, 345, 0, and 20g are the output codes for the
characters ".", "(", n-nw_ myn_ongn_ and "+, respectively.)

$GENERATOR FLOATSCAN ((X) $GEN DP. $LOCAL CR,E.

$GENERATOR DP (( ) CR(33B). ).

CR = IVCHR().

+1 UNLESS NEGTEST(X). CR(74B). CR(40B).
FLOATSCAN(NEG(X)). CR(34B). $RETURN.
1/ +2 UNLESS ZEROTEST(X).

CR(0). CR(33B). CR(0). $RETURN.

2/ E = DECREASE(DFLTSCN1(X, 8)). FLTSCN2(1, CR, DP).
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+3 UNLESS NEGTEST (E).
CR(40B). XDINTSCN(NEG(E)). $RETURN.
3/ CR(20B). XDINTSCN(E). ).

The following generator definition defines a generator to scan
negative integers. It also accepts a single argument, which must be a
negative integer number element, and uses the character receiver specified
by the internal variable chr.

$GENERATOR NEGINTSCAN ((X) $LOCAL CR.
CR = IVCHR().
CR(74B). CR(40B). FDINTSCN(NEG(X)). CR(34B). ).

Now FLOATSCAN must be made the value of the internal var-
iable flr so that it will be called by STNDSCN! when a floating-point number
element is encountered. Similarly NEGINTSCAN must be made the value of
the internal variable nir so that it will be called by FDINTSCN (which is in
turn called by STNDSCN1) when a negative integer is encountered. Also,
the internal variable fdl must be set to 3 to control the operation of
XDINTSCN while processing the e-field of a floating-point number. Thus
the three statements

SETIVFLR(FLOATSCAN). SETIVNIR(NEGINTSCAN).
SETIVFDL(3).

would be included in the COGENT program at a point where their execution
would precede all character scanning.

As a second example, we assume that the standard scanning
conventions for number elements are to be used, but that it is desired to
cause all identifier elements to be reduced to character strings which are
preceded and followed by blanks. This cannot be accomplished by using
STANDSCN or STNDSCN1, so that a special scanning generator must be de-
fined )to replace STANDSCN (we assume that 605 is the output code for a
blank):

$GENERATOR SPECSCAN ({(X, CR)
$GEN SS1. $LOCAL CHRSAVE, LSRSAVE.
$GENERATOR SS1 ((X)

+1 UNLESS NORMTEST(X). NORMSCN(X). $RETURN.
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1/ +2 UNLESS IDENTEST(X). IVCHR()(60B).
IDENTSCN(X). IVCHR()(60B). $RETURN.
2/ +3 UNLESS FIXTEST(X). IVINR()(X). $RETURN.
3/ FLOATEST(X). IVFLR()(X). ).
CHRSAVE = IVCHR(). LSRSAVE = IVLSR().
SETIVCHR(CR). SETIVLSR(SS1).
+1 UNLESS SS1(X).
SETIVCHR(CHRSAVE). SETIVLSR(LSRSAVE). $RETURN.

1/ SETIVCHR(CHRSAVE). SETIVLSR(LSRSAVE).

$FAILURE. ).

This generator is written to be similar to STANDSCN except
for the treatment of identifiers.

To cause identifiersto be delimited by blanks in output strings,
the defined generator SPECSCAN would simply be used in place of the primi-
tive STANDSCN in the generator definition for the appropriate output gen-
erator. However, it might also be desirable for identifier strings to be
delimited by blanks when they are substrings of larger identifiers, i.e.,
when identifier elements already appear in the list structure passed to
IDENT to be converted into an identifier element. In this case, the statement

SETIVISN(SPECSCAN).
would be placed in the program so that it would be executed before IDENT.
This statement would then cause IDENT (and also CIDENT, DECCON,

OCTCON, and FLOATCON) to use SPECSCAN instead of STANDSCN to per-
form character scanning.

H. Identifier-creating Primitives

IDENT (X, N). X may be an arbitrary list structure, and N must be a positive
integer number element denoting an identifier table. IDENT converts X into
a character string and produces an identifier element in table N containing
this character string. The following steps are performed:

1. The generator specified by the internal variable isn is called
and given X as its first argument. Its second argument is a special
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character-receiving generator (which is internal to IDENT and not available
as a separate primitive) which accumulates the sequence of output codes

that it receives in a special character buffer area. If the generator speci-
fied by isn fails, then IDENT fails without further execution. Since the initial
value of isn is STANDSCN, the standard character-scanning conventions will
be used, unless isn or the internal variables affecting STANDSCN or its sub-
generators are reset.

The generator specified by isn must not call IDENT, CIDENT,
DECCON, OCTCON, or FLOATCON dir-eTtly or indirectly, since these gen-
erators all use the same character buffer area. The size of this buffer
area is limited, so that the sum of the total number of output codes placed
in the buffer plus the number of output codes that are larger than or equal
to 75gmust not exceed 1016),. If this restriction is violated, an error mes-
sage will be printed and the entire COGENT program will terminate.

2. If N 7! 0, the identifier table denoted by N is searched for an
identifier element containing a character string that matches the string in
the character buffer area. If such an identifier element is found, IDENT
returns with this element as its result.

3. If N = 0, or if the search in step 2 fails, an identifier element
is created containing the string in the buffer area and the table number N.
The association list is set to the value of the internal variable ial (initial
association list), whose initial value is the dummy element. If N }( 0, the
new identifier element is placed in table N and returned as the result of
IDENT. If N = 0, the element is returned but not placed in any table.

The identifier construction performed by the special label $IDENT,n/
follows the above steps, except that in step 1 no character scan is performed,
and the character buffer is filled directly by output codes from the syntax
analyzer. If the buffer size is exceeded, a terminating error will occur.

CIDENT(X,N). This generator is similar to IDENT, except that if step 3 is
reached, CIDENT fails without creating a new identifier element. Thus
CIDENT will convert X into an identifier element in table N only if such an
element already exists in the table.

I. Number-creating Primitives

DECCON(X). X may be an arbitrary list structure. If X is a number ele-
ment, it is converted into an integer number element which is returned as
the result of DECCON. Otherwise, DECCON converts X into a character
string and produces a positive integer element giving the value of this

string interpreted as a decimal number. The following steps are performed:

1. If X is an integer number element, DECCON returns immediately
with X as its result. If X is a floating-point number element, an integer
number element is created whose sign is the same as X (except that zero is
always positive) and whose magnitude is the largest integer smaller or
equal to the magnitude of X, and DECCON returns with this integer element
as its result.

2. The generator specified by the internal variable isn is called
and given X as its first argument. Its second argument is a special
character-receiving generator (which is internal to DECCON and not avail-
able as a separate primitive) which accumulates the sequence of output
codes it receives in a special buffer area. If the generator specified by
isn fails, DECCON f{ails without further execution. Since the initial value
of isn is STANDSCN, the standard character-scanning conventions will be
used, unless isn or the internal variables affecting STANDSCN or its sub-
generators are reset.

The generator specified by isn must not call IDENT, CIDENT,
DECCON, OCTCON, or FLOATCON directly or indirectly, since these gen-
erators all use the same character buffer area. The size of this buffer
area is limited, so that the sum of the total number of output codes placed
in the buffer plus the number of output codes that are larger than or equal
to 755 must not exceed 1024,,. If this restriction is violated, an error mes-
sage will be printed, and the entire COGENT program will terminate.

3. DECCON sequences through the output codes in the character
buffer. This sequence of codes is interpreted as a positive decimal integer,
and the corresponding integer number element is returned as the result of
DECCON. Output codes are interpreted as digits according to the character
definitions for the object character representatives 0, 1, ..., 9. Output codes
that do not represent digits are ignored.

OCTCON(X). This generator is similar to DECCON, except that octal rather
than decimal conversion is used; i.e., in step 3, the sequence of output codes
is interpreted as a positive octal integer.

FLOATCON(X). X may be an arbitrary list structure. If X is a number
element, it is converted into a floating-point number element which is re-
turned as the result of FLOATCON. Otherwise, FLOATCON converts X
into a character string and produces a positive floating-point number ele-
ment giving the value of this string interpreted as a decimal number. The
following steps are performed:

1. If X is a floating-point number element, FLOATCON returns
immediately with X as its result. If X is an integer number element, it is
converted into a floating-point number element, and FLOATCON returns
with this floating-point number as its result.

2. Same as step 2 for DECCON.
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3. FLOATCON converts the sequence of output codes in the buffer
area into a decimal integer in the same manner as DECCON. This integer
is then converted into a floating-point number. Finally, if any output code
that does not represent a digit appears in the buffer, this floating-point
number is divided by 100, where n is the number of digits following the last
such nondigit. (Thus the last nondigit is interpreted as a decimal point. )
FLOATCON then exits with the resulting floating-point number as its result.

Integer-to-floating-point conversion was discussed in Section E on
arithmetic primitives. If such a conversion produces an exponent overflow,
FLOATCON will fail. On the other hand, if division by 10™ produces an ex-
ponent underflow, FLOATCON will return a floating-point zero.

The number construction performed by the special labels $DEC/,
$OCT/, and $FLOAT/ causes the buffer area to be filled with output codes
directly from the syntax analyzer. Then an integer or floating-point number
element is created as in step 3 for DECCON, OCTCON, or FLOATCON,
respectively. If the buffer size is exceeded, or if a floating-point overflow
(with $FLOAT/) occurs, a terminating error will occur.

J. Output Primitives

The output facilities in COGENT are inevitably more machine-
dependent than the rest of the language. To minimize this dependency, out-
put is largely described in terms of its ultimate forms, such as punched
cards or print lines, without reference to intermediate media such as mag-
netic tape or disks.

Output is described in terms of output media, each of which is char-
acterized by a particular ultimate form, and is handled by a separate set
of primitive generators. At all times during the execution of a COGENT
program, there is associated with each output medium a current record
image. Certain output primitives cause output codes or other numbers to
be written in the current record image; other generators cause the image
to be transmitted to an output device and then to be reinitialized.

Three output media are defined in the initial COGENT system:

1. The P (Printed Output) medium. The current record image for
P contains 135,y character positions, numbered 1 to 135 (from left to right),
plus a carriage control character. Each position holds a character code
between 0 and 774, and the relation between these codes and the corres-
ponding print characters is established by the internal BCD representation
of the 3600. When the current record image is initialized, all character
positions and the carriage control character are set to blanks (60g). (A
blank carriage control character causes a print line to be printed immedi-
ately after the preceding line.)

When a print record is to be sent to a printer with less than
135 character positions, the extra right-hand character positions must
contain blanks.

2. The C (Card Output) medium. The current record image for C
contains 80,y character positions, numbered 1 to 80 and corresponding to
the 80 columns of a punched card, from left to right. Each position holds
a character code between 0 and 774, and the relation between this code and
the corresponding column punches is established by the internal BCD rep-
resentation of the 3600. When the current record image is initialized, all
character positions are set to blanks: (608).

3. The B (Binary Card Output) medium. The current record image
for B contains 9604 bit positions, numbered 1 to 960 and cerresponding to
the individual hole positions on a punched card, as shown in Figure 9. The
bit 1 indicates that a hole is to be punched; the bit 0 indicates that it is not
to be punched. When the current record image is initialized, all bits are
set to zero except bits 10,9 and 12,5, which are set to one to cause the
standard 7-9 punch (indicating a binary card) to occur in column one of
the card.

1 13 \

2 14

3

4

5

6

7

8

9
|~

11 .
1 960

Standard 7-9 punch

Figure 9. Numbering of Hole Positions for
the B (Binary Card Output) Medium

It is expected that additional output media, with associated primi-
tives and internal variables, may be added to the COGENT system in the
future. The programmer may also define his own output media by coding
the appropriate primitives in machine language.
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1. P-medium Output Primitives

PUTPI(C, P). C must be an integer (number element) between 0 and 774,
and P must be an integer between 1 and 135;;. PUTPI1 places the value of
C in the character position indicated by P of the current P-medium record
image. The dummy element is returned.

PUTP(C). This generator is intended for use as a character receiver.
Normally, successive calls of PUTP will place characters in successive
positions of the current P-medium record image, but arbitrary actions may
be specified to occur either when an oversized character is received or
when a specified character position (margin) is reached.

C must be an integer between 0 and 1023,3. The following steps
are performed:

a. If C is larger than 774, then the generator specified by the
internal variable por (P-medium overflow receiver) is called and given C
as its only argument. When this generator fails or returns a result, then
PUTP fails or returns the same result without further execution.

b. If the value of the internal variable ._P,El. (P-medium index)
is equal to the value of the internal variable pmr (P-medium margin), then
the generator specified by the internal variab_l-:a_-gr_r_l_g, (P-medium margin
controller) is called and given C as its only argument. When this generator
fails or returns a result, then PUTP fails or returns the same result with-
out further execution.

c. The value of C is placed in the character position indicated
by the value of pin. Then the value of pin is increased by one, and PUTP
returns the dummy element as its result.

OUTP( ). The current P-medium record image is sent to the output device
indicated by the value of the internal variable pno (P-medium logical unit
number), which must be an integer giving a log_i-gé.l unit number recognized
by the 3600 control system SCOPE. The initial value of pno is 6135, which
represents the standard output tape. When the record has been outputted,
a2 new current record image is created and initialized, pin is set to one,
and the dummy element is returned as the result of OUTP.

SPACEP( ). The carriage control character in the current P-medium
record image is set to 0. This causes a blank line to precede the printing
of this record image. The dummy element is returned.

EJECTP( ). The carriage control character in the current P-medium
record image is set to 1. This causes a page to be ejected before the
printing of this record image. The dummy element is returned.
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STANDPMC(C). This primitive is provided as the initial value of pmr. It
is exactly equivalent to a generator defined by

$GENERATOR STANDPMC((C) OUTP(). $RETURN(PUTP(C)). ).

The initial values of the internal variables associated with the
P-medium are:

por: FAILURE

pin: 1

pmr: 1204,
pmc: STANDPMC

pno: 61y

If these variables (except pin) are not reset, then a character scan using
PUTP as a character receiver will produce printed output in a free-field
format, with 119 characters per line. In this case, the execution of PUTP(C)
will perform the following steps:

a. If C is larger than 774, then PUTP will fail without further
execution.

b. If pin = 1204, then the current record image will be written
on the standard printed output tape, a new current record image will be
created and initialized, and pin will be reset to 1.

c. The value of C will be placed in the character position in-
dicated by the value of pin. Then pin will be increased by one, and PUTP
will return with the dummy element as its result.

It should be noted that, in addition to the records produced by
OUTP, the output of the primitive dump generators, as well as comments
and error messages produced by various system routines, are written by
the output device indicated by pno. Thus system messages will be inter-
spersed with the regular output on the P-medium.

2. C-medium Output Primitives

PUTCI(C, P). C must be an integer (number element) between 0 and 77g,
and P must be an integer between 1 and 80,5, PUTC1! places the value of
C in the character position indicated by P of the current C-medium record
image. The dummy element is returned.
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PUTC(C). This generator is intended for use as a character receiver.
Normally, successive calls of PUTC will place characters in successive
positions of the current C-medium record image, but arbitrary actions may
be specified to occur either when an oversized character is received or
when a specified character position (margin) is reached.

C must be an integer between 0 and 1023;,. The following steps
are performed:

a. If C is larger than 774, then the generator specified by the
internal variable cor (C-medium overflow receiver) is called and given C
as its only argument. When this generator fails or returns a result, then
PUTC fails or returns the same result, without further execution.

b. If the value of the internal variable cin (C-medium index)
is equal to the value of the internal variable cmr (C-medium margin), then
the generator specified by the internal variable cmc (C-medium margin
controller) is called and given C as its only argument. When this generator
fails or returns a result, PUTC fails or returns the same result without
further execution.

c. The value of C is placed in the character position indicated
by the value of cin. Then the value of cin is increased by one, and PUTC
returns the dummy element as its result.

OUTC( ). The current C-medium record image is sent to the output device
indicated by the value of the internal variable cno (C-medium logical unit
number), which must be an integer giving a logical unit number recognized
by SCOPE. The initial value of cno is 62,35, which represents the standard
punched output tape. Then a new current record image is created and
initialized, cin is set to one, and the dummy element is returned as the
result of OUTC.

STANDCMC(C). This primitive is provided as the initial value of cmc. It
is exactly equivalent to a generator defined by

$GENERATOR STANDCMC((C) oUTC(). $RETURN(PUTC(C)). ).

The initial values of the internal variables associated with the
C-medium are:

FAILURE

o]
(@]
H

cin: 1

cmr: 73y

cmc: STANDCMC

cno: 62
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If these variables (except _c_1r_1) are not reset, then a character scan using
PUTC as a character receiver will produce cards in a free-field format,
with 72 characters per card. In this case, the execution of PUTC(C) will
perform the following steps:

a. If Cis larger than 77g, then PUTC will fail without further

execution.

b. If cin = 734, then the current record image will be written
on the standard punched output tape, a new current record image will be
created and initialized, and cin will be reset to 1.

c. The value of C will be placed in the character position in-
dicated by the value of cin. Then cin will be increased by one, and PUTC
will return with the dummy element as its result.

3. Simultaneous P~ and C-medium Output Primitives

PUTPC(C). This generator is intended for use as a character receiver for
writing on both the P and C media simultaneously. It is exactly equivalent
to a generator defined by ‘

$GENERATOR PUTPC((C) PUTP(C). $RETURN(PUTC(C)). ).

4. B-medium Output Primitives

PUTBI(N, P, L). N, P, and L. must be integers such that 1 = P = 960,,,

1l =L =961 - P, and N = 0. Bit positions Pto P + L - 1 of the current B-
medium record image are set to a binary representation of the value of N,
with position P containing the most significant bit. The dummy element is
returned. If N = 2L, it is reduced modulo 2. ‘

PUTB(N). The action of this generator depends upon three numerical quan-
tities which are specified by internal variables: bin (B-medium index),
bwl (B-medium word 1ength), and bmr (B-medium margin)q N must be an
integer such that N = 0.

If@ + b_wl > bmr, then PUTB calls the generator specified by
the internal variable bmc (B-margin controller) and gives this generator N
as its single argument; when this generator fails or returns a result, PUTB
fails or returns the same result without further execution. Otherwise, bit
positions bin to bin + bwl - 1 of the current B-medium record image are
set to a binary representation of the value of N, with the bin-th position
containing the most significant bit. Then the value of bin is replaced by
bin + bwl, and PUTB returns with the dummy element as its result. If
N = 22¥ it is reduced modulo 2bwl
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OUTB( ). The current B-medium record image is sent to the output device
indicated by the value of the internal variable bno (B-medium logical unit
number), which must be an integer giving a logical unit number recognized
by SCOPE. The initial value of bno is 62,9, which represents the standard
punched output tape. Then a new current record image is created and ini-
tialized, bin is set to one, and the dummy element is returned as the result
of OUTB.

No standard margin-controlling primitive is provided for the
B-medium. It is assumed that the programmer will define his own control-
ling generator if the medium is to be used. The initial values of the per-
tinent internal variables are:

bmr: 1
bwl: 1
bin: 1

bmc: FAILURE
bno: 62

so that PUTB will simply fail unless these variables are reset.

K. Dump Primitives

The primitive dump generators are provided for debugging purposes
and allow list structures to be written on the P-medium in a fixed format
which explicitly displays their structural characteristics. In the output of
these generators, each list element is represented by one or more print
lines giving the name and components of the element. Nonliteral names
are given as absolute machine addresses. The same element is not printed
more than once, even if it appears several times in the list structures
being dumped.

The dump primitives always write on the output device indicated by
the internal variable pno, but they do not alter the current P-medium record
image. They all return the dummy element as their result.

DUMPV(X). The value of X is printed out.

DUMPI1( ). The names and values of all local, input, and own variables
associated with the generator that calls DUMPI1 are printed out.

DUMPALL( ). The names and values of all local, input, and own variables
associated with all generators in the calling chain, plus all entries in the
identifier tables, along with their association lists, are printed out.
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I.. Tape-control Primitives

Unlike other input-output facilities, the tape-control primitives ex-
plicitly describe the handling of magnetic tape, rather than an ultimate form
such as cards or print lines. Each tape-control primitive accepts as its
single argument an integer number element giving a logical unit number
(as recognized by SCOPE), which must refer to a magnetic tape unit. The
primitives all return the dummy element as their result.

The exact action taken by each of these primitives corresponds to
the SCOPE tape control request with the same name.
BSPR(LUN). Backspace one record.
BSPF(LUN). Backspace one file.
REWIND(LUN). Rewind to load point.
UNLOAD(LUN). Rewind and unload.
SKIP(LUN). Skip to end-of-file.
MARKEF(LUN). Mark end-of-file.

M. Exit Primitives

NORMEXIT( ).

ABEXIT( ). The calling of either of these primitive generators causes an
immediate termination of the entire COGENT program. NORMEXIT causes
a normal termination, while ABEXIT causes an abnormal termination.

In general, there are five possible causes of program termination:

1. If the syntax analyzer returns on the main level of the program,
and the value of the internal variable gol is zero, a normal termination

occurs.
2. If NORMEXIT is called, a normal termination occurs.
3. If ABEXIT is called, an abnormal termination occurs.

4. If a primitive generator or system routine detects some erro-
neous condition, such as an ill-formed or ambiguous input string, the failure
of a generator called by the syntax analyzer, or an illegal argument for a
primitive generator, an abnormal termination occurs.

5. If some type of storage (list storage, pushdown stack, or syntax
stack) is exhausted, an abnormal termination occurs.
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CHAPTER IV $NOP/ (FACTOR) = (PRIMARY).

AN ILLUSTRATIVE COGENT PROGRAM: SYMBOLIC DIFFERENTIATION 4‘ (FACTOR) = (FACTOR)**%(PRIMARY).

As an extended example of COGENT programming, we give in this $NOP/ (TERM) = (FACTOR).
chapter a complete program for symbolic differentiation. The input read (TERM) = (TERM)*(FACTOR), (TERM)/(FACTOR).
by this program is assumed to be a sequence of sentences followed by an SNOP/ (EXP) =
end-of-file, where each sentence is an arithmetic expression followed by / = (TERM), +(TERM).
a period. The expressions are built up from positive decimal integers and (EXP) = -(TERM), (EXP)+(TERM), (EXP)-(TERM).
variables, combined by the operations +, -, *, /, %k (exponentiation), and by SNOP/ (EX
functional forms. (The usual precedence of operations, as in FORTRAN, is / P SEQ) = (EXP).
assumed.) Expressions may also contain subexpressions of the form: (EXP SEQ) = (EXP SEQ)(, (EXP).

$D(<variable>, <expression>) OUT/ (SENT) = (EXP)(.).

START/ (SENT SEQ) =

denoting the derivative of an expression with respect to a variable.

NORESULT/ (SENT SEQ) = (SENT SEQ)(SENT).

$PROGRAM $OWN DVAR.

H

The output to be produced by the program is an equivalent sequence
of sentences in which the derivative forms have been removed by carrying

out the indicated differentiations symbolically. The character description is used to define a special object character

representative for an end-of-file, which is needed as a terminator in the
goal-specifier sequence of the primary syntax description. (The input code
produced by the standard input editor when an end-of-file is encountered is

A. Syntax Description

The following character and syntax descriptions are used:

$CHARDEF ($EOF) = (101)101.
$PRIMSYN ((SENT SEQ)(SEOF))

(LETTER) = , C,
N o, P

(DIGIT) = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
(DIGIT STR) = (DIGIT), (DIGIT STR)(DIGIT).

(NAME STR) = (LETTER), (NAME STR)(LETTER),
(NAME STR )(DIGIT).

$DEC/ (POS INT) = (DIGIT STR).
$IDENT, 1/ (VARIABLE) = (NAME STR).
$IDENT, 2/ (FUNCT NAME) = (NAME STR).
(POS INT), (VARIABLE). !
((ON(EXP)()).
(FUNCT NAME)({ J(EXP SEQ)()).
$D(()(VARIABLE)(, (EXP)()).

PRIMARY

1

1]

(
(
(
$NOP/ (PRIMARY)
(
(
(

)
PRIMARY)
)

DIFF/ (PRIMARY

1014.)

In the primary syntax description, character-packing special labels
are used to convert positive decimal integers into integer number elements,
and to convert variables and function names into identifier elements in
identifier tables 1 and 2, respectively. To compress the list structures
produced by the syntax analyzer, the special label $NOP/ is attached to
each production whose construction string contains a single phrase class
name and no characters (except for productions that define phrases that
are to be converted into identifier or number elements, rather than extended
list structures). The special label $NOP/ is also attached to the production
(EXP) = +(TERM), where it acts to delete the unnecessary plus sign; i.e.,
(EXP) = +(TERM) is treated in the same manner as (EXP) = (TERM).

The actual process of differentiation is performed by the generator
DIFF(X, Y), which accepts a variable X and an expression Y, and produces
as its result a primary representing the derivative of Y with respect to X,
in which the $D-type of subexpression no longer occurs. Since DIFF is
called at each syntactic level where the $§D-form occurs, the $D-forms will
be elminated as they are encountered by the analyzer, so that the argument
Y of DIFF will already have any $D-forms within it removed by previous
applications of DIFF. Thus the syntax analyzer itself decomposes multiple
differentiations into a sequence of single differentiations which are carried
out by repeated calls of DIFF.
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On the sentence level, each sentence, which will already have been
translated to remove $D-forms, is processed by the generator OUT, which
reduces the sentence to a string of object characters and writes this string
on the printed output medium. At the beginning of the program, an empty
sentence sequence will be recognized, and the generator START will be
called; the only purpose of this generator is to set the internal variable gol
to zero (so that when a sentence sequence terminated by an end-of-file has
been parsed, the program will terminate). Thereafter, whenever a sentence
sequence is recognized, it is processed by the primitive NORESULT, which
produces the dummy element and thereby discards the list structure of the
already processed sequence.

Since the output object language is the same as the input object lan-
guage, the secondary syntax description is empty; i.e., the primary and
total sets of productions are the same.

The generator description begins with a main declaration which
establishes a single universal own variable, DVAR.

B. Precedence

Expressions, terms, factors, and primaries are all phrases that
represent algebraic combinations of integers and variables. We will call
all of these phrases general expressions. Most of our program will consist
of generators that synthesize general expressions from simpler general
expressions. In these processes, it is frequently necessary to enclose such
expressions in parenthesesor to remove enclosing parentheses. We first
consider the precedence rules that determine when such operations are
necessary, and define two generators for performing the operations.

Because of our use of the special label $NOP/, a general expression
of one phrase class may be represented by a list structure whose head element
refers toa production defining another phrase class. Thus a phrase of the class
(EXP) may be represented by any of the following types of list structure:

0: Expression-headed, i.e., headed by a list element containing the
code number of a production whose resultant is (EXP).

1: Term-headed, i.e., headed by a list element containing the code
number of a production whose resultant is (TERM).

2: Factor-headed, i.e., headed by a list element containing the code
number of a production whose resultant is (FACTOR).

3: Primary-headed, i.e., either headed by a list element containing
the code number of a production whose resultant is (PRIMARY), or else con-
sisting of a single integer number element or an identifier element in Table 1.

Similarly, a (TERM) may be represented by a term-headed, factor-
headed, or primary-headed list structure, a (FACTOR) may be represented
by a factor-headed or primary-headed structure, and a (PRIMARY) must be
represented by a primary-headed structure.

107

We define the precedence number of an (EXP) to be 0, of a (TERM) to
be 1, of a (FACTOR) to be 2, and of a (PRIMARY) to be 3. On the other hand,
we define an expression-headed list structure to be O-headed, a term-headed

structure to be l-headed, a factor-headed structure to be 2-headed, and a
primary-headed structure to be 3-headed. We then have the following pre-
cedence rule: A general expression with precedence number i may be

represented by a j-headed list structure if j = i, Conversely, a j-headed
structure may be taken to represent a general expression with precedence
number i if i = j.

Now suppose we have a list structure X representing a general ex-
pression of one phrase class, and we wish to produce a structure represent-
ing an equivalent general expression of another phrase class. If X is
j-headed, and the desired phrase class has precedence number i, then the
structure X may be used directly if i = j. Butif i > j then a new structure
must be synthesized representing the original general expression enclosed
in parentheses.

To perform this parenthesizing when it is required by the precedence
rule, we define the generator:
$GENERATOR CLOTHE((X, N)
+3 IF X =/ (EXP/(EXP)+(TERM)),,.
+3 IF X =/ (EXP/(EXP)-(TERM)),,.
+3 IF X =/ (EXP/-(TERM)),. |
+1 UNLESS N =/ 1. $RETURN(X).
1/ +3 IF X =/ (TERM/(TERM)*x(FACTOR)),,.
+3 IF X =/ (TERM/(TERM)/(FACTOR)),.,.
+2 UNLESS N =/ 2. $RETURN(X).

2/ +3 IF X =/ (FACTOR/(FACTOR)**(PRIMARY)),,.

$RETURN(X).

3/ X /= (PRIMARY/(()(EXP)())),X. $RETURN(X). ).
CLOTHE(X, N) accepts a list structure X representing any general expres-
sion, and an integer N > 0 giving a precedence number. It produces a
structure representing an equivalent general expression with precedence
number N. The original expression is parenthesized only if necessary. The

case N = 0 is not considered, since parenthesizing is never necessary
when N = 0.
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A second generator is needed for removing parentheses. The
generator
$GENERATOR STRIP ((X)
+1 UNLESS X =/ (PRIMARY/(()(EXP)())).X.
1/ $RETURN(X). ).
accepts a list structure representing any general expression and produces

a structure representing an equivalent general expression in which enclosing
parentheses have been removed if they exist.

C. Algebraic Operations

Before discussing the main generator DIFF itself, we consider a set
of generators used by DIFF to combine general expressions algebraically.
Given any general expressions X and Y, the generators SUM(X, Y),
NEGATIVE(X), PRODUCT(X, Y), QUOTIENT(X, Y), and POWER(X, Y) produce
general expressions representing X+Y, -X, X-Y, X/Y, and XY, respectively.
We will consider PRODUCT in detail; the remaining generators are suffi-
ciently similar to be given without further discussion.

The following generator will accept two list structures representing
general expressions and produce a structure representing the product of
these expressions:

$GENERATOR PRODUCT ((X,Y)
X /= (TERM/(()(EXP)()*(()(EXP)())), X, Y.
$RETURN(X). ).
Such simple generators can be used for algebraic operations in a symbolic
differentiation program. However, the output of such a program, although
mathematically valid, would be too complicated to be readable. To produce

a practical program, we must use algebraic operation generators that per-
form at least a limited amount of algebraic simplification.

In the first place, unnecessary parenthesization should be avoided;
i.e., X or Y should only be parenthesized if this is required by the prece-
dence rule. The generator CLOTHE may be used for this purpose:
$GENERATOR PRODUCT ((X, Y)
X /= (TERM/(TERM)*(FACTOR)), CLOTHE(X,1), CLOTHE(Y,2).
$RETURN(X). ).
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However, this version of PRODUCT still produces unnecessary parenthesiz-
ation when Y is term-headed. For example, if X is (TERM/A%B) and Y

is (TERM/C/D*E), then this generator gives (TERM/AxBx(()C/D*E())),
while (TERM/A*B*C/D*E) would be desired.

The avoidance of unnecessary parentheses when Y is term-headed
is a nontrivial problem, as can be seen by considering the actual list
structures involved. In the example just given, X and Y have the
schematic structures:

L

C

while the desired result has the structure:

Such a structure must be created by recursion. The simplest method is
to have PRODUCT, when Y is term-headed, strip off the right-most
factor in Y, call itself recursively to form the product of X with the
remaining part of Y, and then call itself (or QUOTIENT) recursively to
multiply (or divide) this result by the stripped-off factor:
$GENERATOR PRODUCT ((X,Y) $LOCAL TI1.
+1 UNLESS Y =/ (TERM/(TERM)*(FACTOR)), Y, T1.
$RETURN(PRODUCT(PRODUCT(X,Y), T1)).
1/ +2 UNLESS Y =/ (TERM/(TERM)/(FACTOR)), Y, Tl.
$RETURN(QUOTIENT(PRODUCT(X,Y), T1)).

2/ Tl /= (TERM/(TERM)*(FACTOR)), CLOTHE(X,1),
CLOTHE(Y,1).

$RETURN(T1). ).

Note that CLOTHE(Y, 1) may be used instead of CLOTHE(Y, 2) in state-
ment 2, since Y cannot be term-headed if this statement is reached.

In addition to the avoidance of unnecessary parentheses, several
other types of algebraic simplification are desirable. It is particularly
important to delete unnecessary appearances of zeroes and ones in the
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results of the algebraic operation generators. For the generator PRODUCT,
this involves performing the following replacements:

X*0 —> 0; 0xY — 0; Xx]1 > X; 1xY —- Y.

These simplifications are especially important in symbolic differentiation,
since in their absence the general expressions produced by DIFF will usually
contain a profusion of redundant zeroes and ones (since DIFF recursively
decomposes the expression being differentiated into its constituent variables
and integers, whose individual derivatives are either zero or one). Thus,

for example, if the algebraic operation generators do not delete unnecessary
zeroes and ones, the translation of "$D(X, X*Y)" would be "1*Y+0*X"

instead of simply "Y". .

A further type of useful simplification is the distribution of negative
signs, i.e., the replacements:

(-X)*Y = -X*Y;  X*(-Y) > -X*xY; (-X)*(-Y) > XxY.

When the removal of redundant zeroes and ones and the distribution of nega-
tive signs are incorporated into the generator PRODUCT, the final definition

becomes:
$GENERATOR PRODUCT ((X,Y) $LOCAL TI1.

+1 UNLESS X =/ 0. $RETURN(0).

1/ +2 UNLESS Y =/0. $RETURN(O).

2/ +3 UNLESS X =/1. $RETURN(Y).

3/ +4 UNLESS Y =/1. $RETURN(X).

4/ +5 IF X =/ (EXP/-(TERM)), X.
+6 UNLESS Y =/ (EXP/-(TERM)), Y.

5/ $RETURN(NEGATIVE(PRODUCT(X,Y))).

6/ +7 UNLESS Y =/ (TERM/(TERM)*(FACTOR)), Y, Tl.
$RETURN(PRODUCT(PRODUCT(X,Y), Tl)).

7/ +8 UNLESS Y =/ (TERM/(TERM)/(FACTOR)), Y, Tl.
$RETURN(QUOTIENT(PRODUCT(X,Y), T1)).

8/ Tl /= (TERM/(TERM)x(FACTOR)), CLOTHE(X,1),
CLOTHE(Y,1).

$RETURN(T1). ).

It should be emphasized that this version of PRODUCT does not
approach the full degree of algebraic simplification that is possible. In
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particular, integer factors are not multiplied out, and identical factors are
not coalesced into powers. Thus, for example, if X is (TERM/Z*X) and Y
is (TERM/3%X), then the result of PRODUCT(X, Y) will be (TERM/Z*X*3*X),
while the simpler result (TERM/6*X**2) might be desirable. The whole .
concept of algebraic simplification is rather relative and imprecise, and

the amount and type of simplification performed by this version of PRODUCT
has been chosen somewhat arbitrarily.

The remaining algebraic operation generators are defined below. As
with PRODUCT, the éxtent of the algebraic simplifications performed by
these generators has been chosen somewhat arbitrarily.

$GENERATOR SUM ((X,Y) $LOCAL T1.

+1 UNLESS X =/ 0. $RETURN(Y).
1/ +2 UNLESS Y =/ 0. $RETURN(X).
2/ +3 UNLESS Y =/ (EXP/(EXP)+(TERM)),
T1 /= (EXP/(EXP)+(TERM)), SUM(X,Y),
3/ +4 UNLESS Y =/ (EXP/(EXP)-(TERM)), Y, T1.
T1 /= (EXP/(EXP)-(TERM)), SUM(X,Y), T1. $RETURN(TI).
4/ +5 UNLESS Y =/ (EXP/-(TERM)), Y.
Tl /= (EXP/(EXP)-(TERM)), X, Y. $RETURN(TI).
5/ T1 /= (EXP/(EXP)+(TERM)), X, Y. $RETURN(T1). ).

Y, TI.
T1l. $RETURN(T1).

$GENERATOR NEGATIVE ((X) $LOCAL Tl1.
+1 UNLESS X =/ 0. $RETURN(0).
1/ +2 UNLESS X =/ (EXP/(EXP)+(TERM)), X, T1.

T1 /= (EXP/(EXP)-(TERM)), NEGATIVE(X), T1.
$RETURN(T1).

2/ +3 UNLESS X =/ (EXP/(EXP)-(TERM)), X, T1.

Tl /= (EXP/(EXP)+(TERM)), NEGATIVE(X), T1.
$RETURN(T1).

3/ +4 UNLESS X =/ (EXP/-(TERM)), X. $RETURN(X).
4/ X /= (EXP/-(TERM)), X. $RETURN(X). ).
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$GENERATOR QUOTIENT ((X,Y) $LOCAL T1.

+1 UNLESS X =/ 0. $RETURN(0).

1/ +2 UNLESS Y =/ 1. $RETURN(X).

2/ +3 IF X =/ (EXP/-(TERM)), X.
+4 UNLESS Y =/ (EXP/-(TERM)), Y.

3/ $RETURN(NEGATIVE(QUOTIENT(X,Y))).

4/ +5 UNLESS Y =/ (TERM/(TERM)*(FACTOR)), Y, Tl.
$RETURN(QUOTIENT(QUOTIENT(X,Y), T1)).

5/ +6 UNLESS Y =/ (TERM/(TERM)/(FACTOR)), Y, T1.
$RETURN(PRODUCT(QUOTIENT(X,Y), T1)).

6/ T1 /= (TERM/(TERM)/(FACTOR)), CLOTHE(X,1),
CLOTHE(Y,1).

$RETURN(T1). ).

$GENERATOR POWER ((X,Y)
+1 UNLESS Y =/ 1. $RETURN(X).

1/ X /= (FACTOR/(FACTOR)**(PRIMARY)), CLOTHE(X,2),

CLOTHE(Y,3).
$RETURN(X). ).

D. The Main Generator DIFF

113

$GENERATOR DIFF ((X,Y)
DVAR = X. $RETURN(CLOTHE(DIFF1(Y), 3)). ).

$GENERATOR DIFF1 ((Y) $LOCAL Z, Tl.
+1 UNLESS Y =/ DVAR. $RETURN(1).

1/ +2 IF NORMTEST(Y). $RETURN(O).

2/ +3 UNLESS Y =/ (EXP/-(TERM)), Y.
$RETURN(NEGATIVE(DIFF1(Y))).

3/ +4 UNLESS Y =/ (EXP/(EXP)+(TERM)), Y, Z.
$RETURN(SUM(DIFF1(Y), DIFF1(Z))).

4/ +5 UNLESS Y =/ (EXP/(EXP)-(TERM)), Y, Z.
$RETURN(SUM(DIFF1(Y), NEGATIVE(DIFF1(2)))).

5/ +6 UNLESS Y =/ (TERM/(TERM)*(FACTOR)), Y, Z.

$RETURN(SUM(PRODUCT(DIFF1(Y), Z),
PRODUCT(DIFF1(Z), Y))).

6/ +7 UNLESS Y =/ (TERM/(TERM)/(FACTOR)), Y, Z.

$RETURN(SUM(QUOTIENT(DIFF1(Y), Z),
NEGATIVE(QUOTIENT(PRODUCT(DIFF1(Z), Y),
POWER(Z,2))))).

7/ +8 UNLESS Y =/ (FACTOR/(FACTOR)*x(PRIMARY)),
Y, Z.

T1 /= (TERM/LOG(()(EXP)())*(FACTOR )xx

We now come to the main generator of our program, DIFF(X, Y),
which accepts two list structures X and Y representing a variable and
an expression, and produces a structure representing a primary giving
the derivative of Y with respect to X. The actual process of differentia-

(PRIMARY)), STRIP(Y), Y, Z.

$RETURN(SUM(PRODUCT(PRODUCT(DIFFL(Y), Z),
POWER(Y, SUM(Z, (EXP/-I)))), PRODUCT(DIFF1(Z),

tion is carried out by a second generator DIFF1; the action of DIFF is T1))).

merely to call DIFF1 with Y as its only argument, and then to call 8/ +9 UNLESS Y :/ (PRIMARY/(()(EXP)())), Y.
CLOTHE to convert the general expression produced by DIFF1 into a

primary. $RETURN(DIFF1(Y)).

9/ Y =/ (PRIMARY/(FUNCT NAME)(()(EXP SEQ)())), Y, Z.
The purpose of using a second generator in this manner is to

allow DIFF¥1 to obtain the identifier element representing the variable
of differentiation without having to pass this element to DIFF1 as an
input argument on each recursive level. This is accomplished by
setting the universal own variable DVAR, upon entrance to DIFF, to the
name of the variable of differentiation.

$RETURN(ALIST(Y)(Z)). ).

The first action of DIFF1 is to compare its input argument Y with
the variable of differentiation specified by the universal variable DVAR.
If these structures match, then the integer 1, representing dX/dX, is
returned. Otherwise, if Y is not a list structure headed by a normal
element (i.e., if it is an integer or some variable other than the variable of

differentiation), then the integer 0 is returned.
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If Y is headed by a normal list element, then DIFF1 tests for each of
the possible normal elements that can head Y. When the head element is
identified, its sublists are obtained, DIFF1 is called recursively to differen-
tiate the sublists, and the undifferentiated and differentiated sublists are
combined by using the algebraic operation generators into a structure repre-
senting the derivative of Y, which is returned as the result of DIFF1l. The

various cases are treated according to the following differentiation formulas:

—Y)‘ = -Y!

Y+Z) Y'+Z!

i

Y_Z)I = Y'—Z'

%9

Z)' = Y'.Z+2'-Y

Jz)' = Y'/2-2'.Y/Z?

YZ)' = Y'.2-YZ " 4Z " log(Y)- Y2
Y)' = Y!

i

(
(
(
(
(
(
(

The final step of DIFF1 is reached if Y represents a functional
expression. In this case, the action to be taken depends upon the function
name, and a different calculation must be specified for each function name
that may occur in the input object language. Of course, functional ex-
pressions could be treated by having DIFF1 test for each function name
and branch to the appropriate calculation. However, it is advantageous to
use a less direct approach which allows the program to be extended easily
to handle more function names.

In this approach, each function name, which will be an identifier
element in table 2, is assumed to have as its association list a generator
element denoting a generator for differentiating the corresponding function.
When DIFF1 finds a functional expression, it merely calls the generator
denoted by the association list of the function name and gives this generator
as its single argument the expression sequence within the functional ex-
pression. The result of this generator is then returned as the result of
DIFF1.

We define function-differentiating generators for the four function
names SIN, COS, EXP, and LOG. Note that each definition contains an
identifier declaration which initializes the association list of the appropriate
function name to the desired generator element. Also note that since SIN,
COS, EXP, and LOG all take expression sequences containing single ex-
pressions, and since the production (EXP SEQ) = (EXP) has a $NOP/
special label, the input argument of each of these generators is a list
structure that directly represents a general expression, rather than an
expression sequence whose subphrases are expressions.

ooy
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$GENERATOR SINDIF ((Y) $IDA (FUNCT NAME/SIN) = SINDIF.
$LOCAL TI1.

T1 /= (PRIMARY/COS(()(EXP SEQ)())), Y.
$RETURN(PRODUCT(DIFF1(Y), T1)). ).

$GENERATOR COSDIF ((Y) $IDA(FUNCT NAME/COS) = COSDIF.
$LOCAL T1.

T1 /= (PRIMARY/SIN(()(EXP SEQ)())), Y.
$RETURN(NEGATIVE(PRODUCT(DIFF1(Y), T1))). ).

$GENERATOR EXPDIF ((Y) $IDA (FUNCT NAME/EXP) = EXPDIF.
$LOCAL T1.

Tl /= (PRIMARY/EXP(()(EXP SEQ)())), Y.
$RETURN(PRODUCT(DIFF1(Y), T1)). ).

$GENERATOR LOGDIF ((Y) $IDA (FUNCT NAME/LOG) = LOGDIF.
SRETURN(QUOTIENT(DIFFIL(Y), Y)). ).

These generators correspond to the following differentiation formulas:

sin(Y)' = Y'-cos(Y)
cos(Y)' = ~Y'-sin(Y)
exp(Y)' Y'-exp(Y)
log(Y) = Y'/Y

E. Additional Generators

The generator OUT accepts a list structure representing a general
expression, removes enclosing parentheses if they exist, synthesizes a
sentence from the expression, and writes this sentence on the printed output
medium. Each sentence appears in a free-field format beginning at the left
of a new line, and the sentences are separated by blank lines. Since the only
number elements appearing in the list structures given to OUT are positive
integers, the primitive STANDSCN is used for character scanning without
resetting any internal variables.

$GENERATOR OUT ((X)
X /= (SENT/(EXP)(.)), STRIP(X).
SPACEP(). STANDSCN(X, PUTP). OUTP(). ).

The generator START is called at the beginning of the program. Its
only effect is to reset the internal variable gol to zero, so that the program
will terminate when a sentence sequence followed by an end-of-file has been
parsed.

$GENERATOR START(() SETIVGOL(0). ).
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