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Abstract

We introduce SD3, a trust management system consist-
ing of a high-level policy language, a local policy evalua-
tor, and a certificate retrieval system. A unique feature of
SD3 is its certified evaluator: as the evaluator computes
the answer to a query, it also computes a proof that the an-
swer follows from the security policy. Before the answer
is returned, the proof is passed through a simple checker,
and incorrect proofs are reported as errors. The certified
evaluator reduces the trusted computing base and greatly
increases our confidence that the answers produced by the
evaluator follow from the specification, despite complex op-
timizations.

To illustrate SD3’s capabilities, we show how to imple-
ment a secure name service, similar to DNSSEC, entirely in
SD3.

1 Introduction

This paper introduces SD3, a high-level language for
specifying security policies. SD3 is similar to trust manage-
ment systems like PolicyMaker, SDSI, SPKI, and KeyNote
[9, 20, 12, 8]. However, unlike these systems, SD3 has a
built-in certificate distribution component, so that it is pos-
sible to build a complete security infrastructure within SD3.

To illustrate the capabilities and advantages of SD3, we
describe how it can be used to implement a simplified ver-
sion of a real security infrastructure: DNSSEC, the Domain
Name System with security extensions. Our current SD3
prototype captures the core features of DNSSEC, but it uses
a different message format, and it lacks features, such as
replication and update, that are critical to operating DNS
at its present scale (80 million entries as of January 2000).
For these reasons, we do not expect to replace BIND, the
most popular DNS implementation. Nevertheless, the SD3
approach has many advantages over a system like DNS and
BIND:

• SD3 uses a technique calledcertified evaluation to
ensure that the answers it produces actually follow
from the security policy. This is a critical issue as se-
curity infrastructures become larger. For example, in a
recent interview about BIND version 9, Conrad says,

“The complexity of the recent IETF stan-
dards results in a lot of complexity in the
code which increases the potential for bugs
(security related or otherwise). Standards
bloat, in combination with creeping featur-
ism demanded of us by our funders or users,
results in software bloat which is probably
our most significant challenge.”1

Like BIND, our SD3 implementation employs some
sophisticated evaluation techniques, including incre-
mental query optimization, cryptographically pro-
tected message exchanges, pushed certificates, and lo-
cal certificate caches. Moreover, we intend to add even
more optimizations to make our implementation more
efficient and more scalable.

These improvements will add complexity, but certi-
fied evaluation ensures that the answers our implemen-
tation produces are nevertheless correct. Our certi-
fied evaluator computes not only an answer, but also
a proof that the answer is correct. Before the answer
is returned, the proof must pass through a very simple
proof checker. If the proof cannot be checked, the eval-
uator fails. The correctness of the complete implemen-
tation therefore does not depend on the complex eval-
uator, but rather on the simple checker. This reduces
the size of the trusted compute base significantly.

• SD3 is ahigh-level policy language. An SD3 policy
abstracts away from details such as certificate distribu-
tion and signature verification; these are handled by the
underlying policy engine. Consequently, SD3 policies
are easy to write and understand. We will demonstrate

1LinuxSecurity.com, October 3, 2000.



this by writing the core of a DNSSEC resolver in less
than 10 lines of code.

• SD3 isprogrammable. Like other trust management
systems, it can easily be retargeted to security poli-
cies other than DNSSEC; in fact, it was not devel-
oped with DNSSEC in mind. SD3 should be able to
support any policy written in SPKI or KeyNote (but
not PolicyMaker, which is much more expressive than
these other systems). Programmability means that new
policies can be implemented more quickly, either from
scratch or adapted from existing policies. For exam-
ple, the DNSSEC resolver we present in this paper was
obtained from a DNS resolver by adding a few addi-
tional lines of code. In contrast, the real-world transi-
tion from DNS to DNSSEC is still not widely imple-
mented, despite years of planning.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce SD3. In Section 3 we briefly re-
view DNS before showing how we implement the core of
DNSSEC in Section 4. Section 5 gives an informal analysis
of the resulting DNSSEC implementation. Section 6 de-
scribes the format of our proofs and how the proof checker
works. Section 7 describes related work, and we conclude
in Section 8.

2 SD3

SD3 is an extension of datalog, a database programming
language; it stands for Secure Dynamically Distributed Dat-
alog. We will introduce SD3 in stages, starting with its dat-
alog core, then moving on to our security extensions.

A datalog program is a set of rules. Each rule is a logical
implication, written from right to left: if everything on the
right holds, then the left-hand side holds as well. For ex-
ample, the following rules define a graph and its transitive
closure:

E(1,2) :- ;
E(2,3) :- ;
T(x,y) :- E(x,y);
T(x,y) :- T(x,z), T(z,y);

The rules define two relations,E and T. They say that
E(1,2) and E(2,3) always hold, because their right-
hand sides (to the right of the symbol ‘:- ’) are empty. If
we think ofE as the edge relation of a graph, then the rules
defineT to be its transitive closure: every edge ofE is an
edge ofT by the third rule, and the fourth rule closesT un-
der transitivity. Given this program, datalog can evaluate
a query (such asT(1,x) ) to all of its provable instances
(T(1,2) andT(1,3) ).

We turn datalog into a trust management system by ex-
tending the language with SDSI global names [20, 1], which

are (local) names paired with public keys. In SD3, we use
the syntaxK$E for the global name of a relationE under
the control of the keyholder of public keyK.2 In SDSI,K$E
would be pronounced, “K’s E.” Global names can be used
in SD3 rules in the same way as local names, for example:

T(x,y) :- K$E(x,y)

This rule says thatT(x,y) holds provided thatK$E(x,y)
holds. The SD3 implementation can only conclude that
K$E(x,y) holds if K says that it does, in the sense of
BAN logic [10, 2]. For example, we could conclude that
K$E(1,2) holds if we were given a digital certificate,
signed by the private key corresponding toK, and assert-
ing E(1,2) . In other words, using a global name in SD3
implies authentication.

We also permit global names to come with an IP address,
using the syntax(K@A)$E. The address can serve as the
target of a query for the name. For example, consider these
rules:

T(x,y) :- (K@A)$E(x,y);
T(x,y) :- T(x,z), T(z,y);

As in the first set of rules, these rules specify the transitive
closure of a graph. However, in this case the edge relation
is not given locally, but can be obtained at a computer with
addressA. A local SD3 evaluator can compute the transi-
tive closure by querying a remote SD3 evaluator at address
A for K’s relationE; the result should be the edge relation,
contained in a certificate (or certificates) signed by the pri-
vate key corresponding to the public keyK. Once the edge
relation has been obtained, the rest of the computation can
take place locally.

SD3 rules can be used to create “chains of trust”:

T(x,y) :- (K@A)$G(z), z$E(x,y);
T(x,y) :- T(x,z), T(z,y);

In this version of transitive closure, the edge relation
can be obtained in two steps. First, an authenticated
query/response toK@Acan obtain the relationG; eachz in
(K@A)$G(z) should be a key/address pair. Second, each
z can be queried in turn for an edge relation. The full edge
relation is the union of the edge relations of all thezs. The
rules form chains of trust of length two, withK signing the
keys z , and eachz signing its edge relation; it is possi-
ble to construct arbitrary-length chains of trust in SD3. In
this way, we can securely “bootstrap” knowledge of a sin-
gle, statically configured public key (K) into knowledge of
many keys (thezs), solving the key distribution problem.

2We use DSA keys, but we will omit the exact syntax for brevity.
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Figure 1. A portion of the domain name space

3 DNS

DNS is the Domain Name System, a distributed database
that maps domain names to host data (IP addresses, mailer
addresses, and so on). In this section and the next, we give
a brief overview of DNS, and show how to implement a se-
cure version of it in SD3. In our overview, we will ignore
many important details of the DNS implementation (repli-
cation, caching, update, . . . ), and instead focus on its overall
structure. See Albitz and Liu [4] for a comprehensive treat-
ment.

DNS is structured around thedomain name space, a tree
with labeled nodes (see Figure 1). Adomainis a subtree
of the domain name space. Thenameof a domain is the
sequence of labels on the path from the root of the domain
up to the root of the entire tree, separated by ‘.’. For exam-
ple, the domain name of the lower right node in Figure 1 is
‘www.lcs.mit.edu.’. Domain names can also double as the
names of hosts.

DNS maps domain names to IP addresses (and other host
data). Responsibility for this mapping is divided up among
programs callednameservers. Each nameserver is associ-
ated with a domain. A nameserver can assign addresses to
names in its domain, and it can delegate responsibility for
subdomains of its domain to other nameservers.

A domain minus its delegated subdomains is called a
zone. A nameserver only stores data for its zone, and not
its complete domain. This zone data is maintained inre-
source recordsthat associate domain names to values. Two

types of resource records are of particular interest: address
(A) records give the IP address of their associated domain
name, and nameserver (NS) records are used to delegate re-
sponsibility for subdomains to other nameservers.

Collectively, the zone data of the DNS nameservers de-
fines the complete DNS mapping. However, this data is dis-
tributed in the network, and finding the address of a partic-
ular name may require zone data from several nameservers.
In DNS, a program known as aresolveris responsible for
querying the different nameservers. Intuitively, a resolver
looks up the address of a domain name by querying the
root nameserver. If the root nameserver has an A record
for the name, it can simply return it. More likely, the root
will return an NS record, indicating that it has delegated
responsibility for the name to another nameserver. The re-
solver queries this new nameserver in turn: if the name-
server replies with an A record, the resolver is done; but if
the nameserver replies with an NS record, the resolver must
query the next nameserver. This continues until an A record
is returned, or a nameserver replies with failure.

Thus, to find the address of a name, the resolver gathers
a sequence of NS records, starting with the root, and ending
with the nameserver that returns an address record for the
name: a classic chain of trust. Unfortunately, the chain of
trust as implemented in DNS is not secure, because commu-
nication between the nameservers is not secure. DNSSEC
is an extension of DNS that uses KEY resource records and
digital signatures for security. We will show how to specify
a core version of DNSSEC in the next section.

4 Specifying DNSSEC in SD3

In Figure 2 we give the SD3 code that implements (a sub-
set of) the zone data of some actual nameservers. The SD3
code for each nameserver begins by giving the IP address
where the nameserver is running, and the key that other
nameservers can use to authenticate its data. It continues
with the rules defining the resource records. Each name-
server maintains a single start-of-authority (SOA) record,
associated with its own domain name. The values in the
SOA record are the domain that the nameserver is responsi-
ble for, and the host name of the nameserver.3 For example,
the root nameserver is calleda.rootservers.net ,
and it is in charge of the root (‘. ’) domain. Name-
servers use NS records to delegate domains to other
nameservers, e.g., the recordNS(com.,a.gtld-
servers.net.) is used by the root nameserver to
delegate thecom domain to the nameserver with name
a.gtld-servers.net . An address record like
A(a.gtld-servers.net.,198.41.3.38) gives
the IP address associated with a name. Finally, nameservers

3Real DNS SOA records also contain some administrative information
that we have omitted.



Zone data for the root nameserver

site 198.41.0.4; key K1;
SOA(.,a.root-servers.net.) :- ;

NS(com.,a.gtld-servers.net.) :- ;
A(a.gtld-servers.net.,198.41.3.38) :-;
KEY(a.gtld-servers.net.,K2) :- ;

Zone data for thecom. nameserver

site 198.41.3.38; key K2;
SOA(com.,a.gtld-servers.net.) :- ;

NS(att.com.,kcgw1.att.com.) :- ;
A(kcgw1.att.com.,192.128.133.77) :- ;
KEY(kcgw1.att.com.,K3) :- ;

NS(.,a.root-servers.net.) :- ;
A(a.root-servers.net.,198.41.0.4) :- ;
KEY(a.root-servers.net.,K1) :- ;

Zone data for the att.com. nameserver

site 192.128.133.77; key K3;
SOA(att.com.,kcgw1.att.com.) :- ;

NS(research.att.com.,
ns.research.att.com.) :- ;

A(ns.research.att.com.,
192.20.225.4) :- ;

KEY(ns.research.att.com.,K4) :- ;

NS(.,a.root-servers.net.) :- ;
A(a.root-servers.net.,198.41.0.4) :- ;
KEY(a.root-servers.net.,K1) :- ;

A(www.att.com.,192.20.3.54) :- ;

Figure 2. DNS resource records in SD3

also have KEY resource records, which associate a public
key with names (for brevity, we are usingK1, K2, etc.,
instead of the full keys).

The relation names used by each nameserver are consid-
ered local to that nameserver. For example, the root name-
server defines relations namedK1$SOA, K1$A, K1$NS,
and K1$KEY, and these are distinct from the relations
K2$SOA, etc., defined at the other nameservers.

Figure 3 shows a secure resolver written in SD3. The
rules define a relation,DNS, between names and addresses:
if DNS(n,a) holds, thena is the address ofn. The
resolver—as is typical in the real DNS—is in fact part of a
nameserver (the rules of Figure 3 appear at any nameserver
in Figure 2 that wants to offer resolution services), so it has
access to the nameserver’s zone data. The first rule, which
we repeat below, says that if the nameserver has an A record
for the name, then the A record determines the mapping:

DNS(n,a) :- A(n,a);

Otherwise, the resolver should consult another nameserver.
There are two subcases. If the resolver’s nameserver does
not have authority over the name, then the resolver should
consult the root nameserver and work down:

DNS(n,a) :- SOA(n2,n3), n !>= n2,
NS(.,n4), A(n4,a4),
KEY(n4,k), Down(k@a4,n,a);

The first line looks at the nameserver’s SOA record to see
what domain the nameserver is in charge of (n2). If the
name we are looking up does not fall in that domain (n
!>= n2 ), then we find the name of the root nameserver
(n4), its address (a4), its key (k ), and consult the root
nameserver using the auxiliary relationDown.

Down is defined so that ifDown(x,n,a) holds, then
a is the address ofn according to the nameserver with key
and address given byx . Its definition is simple:

Down(x,n,a) :- x$A(n,a);
Down(x,n,a) :- x$NS(n2,n3), n>n2,

x$A(n3,a3), x$KEY(n3,k),
Down(k@a3,n,a);

The first rule says thatDown(x,n,a) holds if x has an
address record forn with addressa. The second cov-
ers the case wherex has delegated responsibility forn:
x$NS(n2,n3), n>n2 means thatn is in the domainn2 ,
which has been delegated to nameservern3 . The rest of the
rule looks up the address and key ofn3 and consults it, re-
cursively usingDown.

The final rule ofDNScovers the case where the resolver’s
nameserver has authority over the name, and it has dele-
gated the name to another nameserver. If so, then it must
have an appropriate NS record in its own zone data:

DNS(n,a) :- SOA(n2,n3), NS(n4,n5),
n>n4, n4>n2,
A(n5,a5), KEY(n5,k),
Down(k@a5,n,a);



DNS(n,a) :- A(n,a);

DNS(n,a) :- SOA(n2,n3), n !>= n2,
NS(.,n4), A(n4,a4), KEY(n4,k), Down(k@a4,n,a);

DNS(n,a) :- SOA(n2,n3), NS(n4,n5), n>n4, n4>n2,
A(n5,a5), KEY(n5,k), Down(k@a5,n,a);

Down(x,n,a) :- x$A(n,a);

Down(x,n,a) :- x$NS(n2,n3), n>n2,
x$A(n3,a3), x$KEY(n3,k), Down(k@a3,n,a);

Figure 3. A DNSSEC resolver written in SD3

Once the address (a5) and key (k ) of the nameserver is
known, the lookup proceeds usingDownagain.

5 Analysis

The policy of our secure DNS resolver is easy to un-
derstand, because it is given in less than 10 lines of code.
To emphasize this, we give an informal analysis of its se-
curity aspects, suggest some quick variations, and discuss
their consequences. Keep in mind how difficult it would be
to analyze or change the security policy of BIND, working
from its source code.

Consider the second rule of our resolver:

DNS(n,a) :- SOA(n2,n3), n !>= n2,
NS(.,n4), A(n4,a4),
KEY(n4,k), Down(k@a4,n,a);

It says that when the name to look up does not come under
the authority of the resolver’s nameserver, the root name-
server should be consulted. The address of the root name-
server is looked up usingA(n4,a4) . Since the nameA
is not qualified, SD3 takes this to refer toK$A, whereK is
the key of the resolver’s nameserver. This means that the
resolver will not use some otherK’$A(n4,a4’) to find
the root’s address. This is quite important, as every name-
server needs the root address, so there are many different A
records for the root, at least one per nameserver. By mak-
ing this restriction, we limit the number of nameservers in
control of the DNS mapping, as determined by the resolver.

More generally, keeping track of global names in our
cache helps us prevent cache poisoning [6]. In one form
of cache poisoning, a resolver asks a rogue nameserver for
records under the authority of the rogue, and the rogue re-
sponds with records for domains not under its authority. For
example, the rogue might return an A record specifying that
the root nameserver has the rogue’s own address. The rogue
hopes that the resolver will place the record in its cache, and

use it the next time it needs to contact the root nameserver.
There are two protections in SD3 that prevent this. First, the
records returned by the rogue must have valid signatures, or
they will not be placed in the cache. Second, the signing
principal is entered into the cache along with the records.
So the rogue can get a “poison” address record for the root
into the cache, provided it signs it with a key under its con-
trol; but the rule above will never use the poison record to
look up the address of the root (assuming the rogue does not
have the resolver’s own key).

We could have written the rule another way:

DNS(n,a) :- SOA(n2,n3), n !>= n2,
NS(.,n4), DNS(n4,a4),
KEY(n4,k), Down(k@a4,n,a);

Here we have replaced the lookup of the A record with a
recursive reference to theDNSrelation. This gives con-
trol of the root address to any nameserver in charge of
a.root-servers.net . This includes the root name-
server itself, as well as the nameserver for thenet subdo-
main. In fact, this is similar to the actual DNS policy. This
can lead to a violation of the principal of least privilege:
Bernstein has noted domains whose mappings are poten-
tially controlled by hundreds of nameservers [7].

To repair this and other problems in DNS, Bernstein has
suggested that NS records should associate domains with
theaddressesof nameservers, rather than their names. This
would eliminate the DNS lookup on the name of the name-
server. Making this change to the real DNS is impractical,
but, it is easy to experiment with in SD3. First, we introduce
a newNS2 resource record, associating a domain with the
address and key of the nameserver in charge of that domain.
For example, theNS2 record for the root would be

NS2(.,198.41.0.4,K1) :- ;

We can then modify the rules of the resolver to use the new
resource record, for example,

DNS(n,a) :- SOA(n2,n3), n !>= n2,
NS2(.,a4,k), Down(k@a4,n,a);
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Figure 4. The SD3 evaluator

The change to the resolver can be accomplished by replac-
ing one 10 line program with another.

Finally, we consider a kind of denial of service at-
tack which can be caused by a misconfigured or corrupted
nameserver. Suppose an attacker registersbad.com ,
so it controls the nameserver,N, for that domain. The
nameservera.gtld-servers.net for com will del-
egate bad.com to that nameserver: it will have a
recordNS(bad.com.,N) . The attacker could now del-
egatebad.com back to a.gtld-servers.net , us-
ing a recordNS(bad.com.,a.gtld-servers.net) .
Then, if the attacker can get someone to look up the domain
bad.com , their resolver may go into a loop.

SD3, on the other hand, will detect the loop immediately
and halt, with the correct answer (none). This is because
recursion is built in to SD3, and, indeed, is necessary for
realistic policies. For example, our rules forDown are re-
cursive; and recursion is needed formutual trust, e.g., where
Alice trusts Bob and delegates to him, and vice versa. So,
SD3 has been built from the start with loop detection.

6 Certified evaluation

The structure of our evaluator is shown in Figure 4. It
is a modified datalog interpreter with three parts: an opti-
mizer; a cache; and a core evaluator. Evaluation is initiated
by sending a query, input certificates, and the local program
through the optimizer. This produces an optimized set of
rules that is passed to the evaluator, which places them in

its cache. The core evaluator does a standard datalog eval-
uation on the cache, except that it is capable of detecting
when queries need to be sent out into the network. The
evaluator expects replies to be certificates containing rules;
after verifying the certificates, the rules of the response are
passed through the optimizer, producing an optimized set of
rules that is placed in the cache. Eventually, the evaluator
returns the answer to the query.

Datalog has been studied for several decades, so in im-
plementing SD3 we have been able to incorporate stan-
dard, off-the-shelf database evaluation techniques, rather
than reinventing them (see [3] for a sampling). We have
written a separate paper that discusses the more novel im-
plementation techniques of our evaluator, as well as the the-
oretical foundations of SD3 [18].

Perhaps the most notable feature of our evaluator from
the security perspective is that in addition to producing an-
swers to queries, it also produces a proof that the answers
are correct: it is acertified evaluator. The proof is run
through a very simple checker before the answer is reported
by the evaluator. If the proof does not check, the evaluator
reports an error. Because the checker is so simple, this gives
us a high assurance that the answers produced by the eval-
uator are correct, despite its more complex implementation.
In the rest of this section, we describe the proofs produced
by the evaluator and the operation of the checker.

The proof produced by the evaluator shows that a list of
facts (the answer to the query) follow from the input secu-
rity policy. It consists of a list of initial facts, a list of rules,
a list of instructions on how to use the rules to deduce facts,



Assumptions

0. K3$SOA(att.com.,kcgw1.att.com.)
1. K3$NS(.,a.root-servers.net.)
2. K3$A(a.root-servers.net.,198.41.0.4)
3. K3$KEY(a.root-servers.net.,K1)
4. K1$A(a.gtld-servers.net.,198.41.3.38)

Rules

0. K3$DNS(n,a) :- K3$SOA(n2,n3), n !>= n2,
K3$NS(.,n4), K3$A(n4,a4),
K3$KEY(n4,k),
K3$Down(k@a4,n,a);

1. K3$Down(x,n,a) :- x$A(n,a);

Instructions

1: 4
0: 0,1,2,3,5

Results

6: K3$DNS(a.gtld-servers.net.,198.41.3.38)

Figure 5. A proof of K3$DNS(a.gtld-
servers.net.,198.41.3.38)

and a list of indices that specify which of the deduced facts
correspond to the answer. We will illustrate proofs and the
operation of the checker by example.

Suppose we query theatt.com nameserver from Fig-
ures 2 and 3 for the address ofa.gtld-servers.net :
the query is

K3$DNS(a.gtld-servers.net.,x)

and the answer is

K3$DNS(a.gtld-servers.net.,198.41.3.38)

The evaluator can produce this answer after a single
query/response with the root nameserver. At the same time,
it produces a proof for the answer, shown in Figure 5. The
initial facts come from rules with no conditions: they al-
ways hold. In this case, 5 facts were used, numbered 0
to 4. Notice that all the facts use fully qualified global
names (we’ve omitted the IP addresses from these names,
for brevity). Most of the facts are qualified withK3, which
is the key of the local nameserver. However, fact 4 is qual-
ified with K1, the key of the root nameserver. We permit
this as afact because it comes from a certificate signed by
K1, obtained by the query/response. We permit it as an
initial fact because the checker is not allowed to do any
query/response of its own. This is why the proof must
contain fully qualified names: SD3 does not treat address
records signed byK1 and K3 the same, and the checker
must make sure of the difference.

The rules are a subset of the local rules; the evaluator
only lists the rules that were needed to obtain the answer.
In this case, two rules were used, numbered 0 and 1. Once
again, the rules use fully qualified names.

The instructions, which are not numbered, consist of a
rule number, followed by a colon, followed by a list of fact
numbers. An instruction tells the checker to apply the rule
using the facts from left to right, to obtain a new fact. For
example, the first instruction,1: 4 , says to apply rule 1
using fact 4. Following this instruction, the checker deduces

K3$Down(K1,
a.gtld-servers.net.,
198.41.3.38)

This becomes fact number 5. The final instruction says to
apply rule 0 using facts 0, 1, 2, 3, and the new fact 5, in
order. The checker deduces

K3$DNS(a.gtld-servers.net.,198.41.3.38)

which becomes fact 6.
After all of the instructions have been followed,

the checker has to verify that the answers have
been derived from the rules. The results section
simply lists the answers and their position in the
list of facts. In this case, there is a single answer,
K3$DNS(a.gtld-servers.net.,198.41.3.38) ,
and the results section says that it should match fact 6.
Once the checker does this simple verification, it can report
that the proof is valid.

Clearly, the process of checking is quite simple, because
the proof contains such detailed instructions for finding the
answer from the rules. In fact, our checker is currently writ-
ten in less than 100 lines of code.

The job of the evaluator is much harder, however. It has
the local rules to work with, but it does not have instructions
on which rules to apply, and which facts to use; it has to
deduce this itself. It also has to decide when to query for
remote certificates. And finally, it has to produce the proof
for the checker. This is more difficult than it might seem,
because our optimizer works by rewriting the local rules,
based on the input query, into a more efficient form that is
passed to the core evaluator. So, the evaluator is not even
working from the same set of rules as must appear in the
proof. The optimizer and evaluator must be coordinated to
produce a proof in terms of the original, unoptimized rules.

Certified evaluation thus reduces the trusted computing
base from a large and complex evaluator to a small and sim-
ple checker. It is still possible for the evaluator to produce
a wrong answer, but it can never produce a proof for that
wrong answer that will pass the checker. It is also possible
for the evaluator to produce a correct answer but an incor-
rect proof. In either case, the checker will report failure,
indicating a definite bug in the evaluator; not only does the
checker prevent incorrect answers, it essentially acts like an
assert statement, helping us to debug the evaluator.



7 Related work

SD3 is a successor to the QCM trust management sys-
tem [13, 15, 14, 19]. Like SD3 and some of the other trust
management systems we will discuss, QCM uses logic to
encode security policies. The innovation of QCM was to
notice that many security policies can be expressed almost
entirely within the fragment of logic that forms the core
of database programming languages, hence enabling auto-
matic certificate retrieval (or, more generally, credential re-
trieval). We believe that automatic certificate retrieval can
and should be applied to other trust management systems
(e.g., SPKI [12], KeyNote [8]). Variations of QCM have
been based on the relational algebra [13], set comprehen-
sions [15], and now, with SD3, datalog—all of which are
roughly equivalent, by variations of Codd’s Theorem. SD3
extends QCM with recursive policies (which were impor-
tant in our DNSSEC example, and which also arise in cases
of mutual trust) and certified evaluation.

The importance of linked, authenticated namespaces in
trust management was pointed out by Rivest and Lampson’s
SDSI [20]. We introduced them in Section 2 by the example

T(x,y) :- (K@A)$G(z), z$E(x,y);

Here(K@A)$G is the name for a relationG authenticated
by K, and, more importantly, the keyz extracted from
(K@A)$G is used to form the authenticated namez$E,
whose contents can then be securely accessed. This is much
like extracting a hyperlink from a web page and follow-
ing it. Linked names are a crucial security mechanism, be-
cause they allow knowledge of one key to be bootstrapped
securely into knowledge of many keys; surprisingly, not
all trust management systems have linked names. We feel
that SD3 can express roughly the same policies as SDSI 2,
which has merged with SPKI [12]; however, we cannot
make a definitive statement, because SPKI’s tag intersec-
tion operation is not specified. SDSI and SPKI do not do
certificate retrieval.

KeyNote [8] is a trust management system that seems to
be about as expressive as SDSI/SPKI. In place of SPKI’s
tag intersection, KeyNote provides a variety of arithmetic
and comparison operators for use in policies. When SD3
is equipped with these same operators, we can express
KeyNote policies. KeyNote does not have automatic cer-
tificate retrieval.

PolicyMaker [9] is the system that introduced the term
“trust management.” PolicyMaker can express policies that
SD3 cannot, because its policies can rely on programs in
arbitrary safe languages. PolicyMaker is thus a universal
language, while the core of SD3, like datalog, lies in P.
The limited expressiveness of SD3 helps make automatic
certificate retrieval possible; PolicyMaker does not retrieve
certificates.

REFEREE [11] is a trust management system in which
the policy writer can write policies that cause certificates to
be retrieved. That is, a REFEREE policy can retrieve certifi-
cates, but it must be done explicitly. In SD3, the evaluator
decides when to retrieve certificates, automatically; instruc-
tions to retrieve certificates do not appear in SD3 policies,
so, they are shorter and easier to understand and write.

Oasis [16] is a distributed access control system; we con-
sider it to be a trust management system. Oasis is based on
Horn clauses, and, therefore, is closely related to SD3. Oa-
sis seems to lack linked names, and does not have automatic
certificate retrieval; clients are responsible for gathering cer-
tificates. Oasis supports revocation in an interesting way:
the issuer of a certificate keeps track of what other certifi-
cates were used as evidence that the first certificate should
be issued. Anyone who relies on a certificate notifies the
issuer, and the issuer will notify them if a certificate is re-
voked. Revoking a certificate can thus cause the revocation
of other certificates that rely on it. The system essentially
maintains a proof tree for each issued certificate. In contrast
with the proofs constructed by SD3’s certified evaluator, a
proof tree in Oasis is distributed in pieces in the network,
and is used for a different purpose (revocation rather than
reducing the trusted computing base).

Trust Policy Language (TPL) [17] is a trust management
system with automatic certificate retrieval. The authors
show that the monotonic portion of TPL can be translated
to Prolog; by the same technique, we can build a translation
to SD3. TPL does not use linked names, and uses a dif-
ferent strategy than SD3 for determining where to retrieve
certificates.

Delegation Logic (DL) [21] is a trust management sys-
tem based on a logic programming language. DL does
not provide certificate retrieval, and permits non-monotonic
policies (SD3 is strictly monotonic).

Certified evaluation has similarities to several existing
techniques. Acertified compileris a compiler that produces
object code from source code, and at the same time, pro-
duces a proof that the object code satisfies certain safety
policies [23]. The proof can be run through a simple
checker. Translation validationis another compiler tech-
nique, in which the compiler produces not a safety proof
for the object code output, but rather, a proof that it is se-
mantically equivalent to the source [22].

Appel and Felten’sproof-carrying authentication[5]
formalizes several authentication frameworks in logic, thus
reducing authentication tests to checking whether a logical
statement is valid. To simplify the job of the resource man-
ager, a client wanting to use a resource is required to pro-
duce a proof of the logical statement which can be checked
very simply. These proofs are similar to the proofs pro-
duced by SD3’s certified evaluator, but SD3 uses them for
a slightly different purpose: we want to ensure that the an-



swers produced by the evaluator are correct. Therefore, our
checker is part of the evaluator, and the proof never travels
over the network (though there is nothing to prevent this if it
is desired). In contrast, the Appel/Felten system only has a
checker, and the proof comes across the network. The logic
supported by Appel and Felten’s system is more powerful
than SD3. However, SD3 has advantages. First, not only
does it include a checker, but its certified evaluator produces
proofs automatically, instead of by hand, as is currently the
case in the Appel/Felten system. Second, SD3 is capable
of retrieving certificates for use in its proofs, while the Ap-
pel/Felten system does not do certificate retrieval.

The Kimera project [25, 24] tests Java bytecode verifiers
and virtual machines by feeding them millions of automati-
cally generated class files. If two verifiers or JVMs disagree
on the same input, then there is a bug in one of them. These
duelling verifiers and JVMs are similar to our evaluator and
checker, except that one of the duellists (the evaluator) gives
considerable help to the other.

8 Conclusion

We have described SD3, a trust management system con-
sisting of a high-level policy language, a local policy eval-
uator, and a certificate retrieval system. We have shown
that SD3 policies are easy to write and understand, and our
version of DNSSEC shows that SD3 can be used to build
realistic security infrastructures.

A unique feature of SD3 is its certified evaluator: as the
evaluator computes the answer to a query, it also computes a
proof that the answer follows from the security policy. Be-
fore the answer is returned, the proof is passed through a
simple checker, and incorrect proofs are reported as errors.
The certified evaluator reduces the trusted computing base
and greatly increases our confidence that the answers pro-
duced by the evaluator follow from the specification, despite
complex optimizations.
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