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1. INTRODUCTION
Distributed query evaluation usually assumes a fixed topol-
ogy, where the set of servers and the partitioning of data on
the servers is known in advance. Given a query expression,
an optimizer will first produce a global plan, then assign
a server for each operator in the plan. The query is then
evaluated distributively, according to that plan.

However, in the Web, topology is discovered dynamically:
by following a link, we discover new links that were previ-
ously unknown. It is impossible to construct a global plan
ahead of time, or to pre-assign sites to operators. The Web
requires a reexamination of the distributed query evaluation
paradigm.

In this paper, we propose a new paradigm for distributed
query evaluation on the Web. We present the paradigm in
terms of a simple query language, called dynamically dis-
tributed datalog (d3log), which extends datalog by a single
feature, dynamic site discovery. The following example gives
the intuition:

R(x, y) :– E(x, w, z), w$R(z, y)

This rule says that R(x, y) holds whenever: (1) E(x, w, z)
holds; and (2) R(z, y) holds at site w. That is, any site s can
define its own, distinct relation R, and we write s$R(z, y)
if R(z, y) holds at site s. In our rule, the site w is drawn
from the local relation E; using our Web analogy, w is like
a link that we discover from E. Navigation (discovery and
traversal of several links) is easy to express in d3log.

The simple addition of dynamic site discovery changes the
character of query evaluation, and motivates novel evalua-
tion techniques. The main paradigm change is the introduc-
tion of an intensional answer, in which a server responds to
a query not with a table, but rather with a set of rules. To
illustrate, consider the example above and assume that the
server receives the query R(1, y). Examining its local table

E, it finds the tuples E(1, s2, 2) and E(1, s3, 3), i.e., it “dis-
covers” that the sites s2 and s3 hold relevant answers. At
this point, rather than contacting those sites directly, it may
decide to return an answer instructing the client to contact
those sites itself:

R(1, y) :– s2$R(2, y) R(1, y) :– s3$R(3, y)

This is an intensional answer, consisting of a set of rules
rather than a set of tuples. Another possibility is for the
server to contact site s2 directly and return that answer,
while instructing the client to contact site s3 itself. Or,
the server could contact both sites and return a traditional,
extensional answer to the client.

Intensional answers offer several advantages for distributed
query evaluation on the Web. First, they provide flexibil-
ity in coping with unavailable servers. If one server relies
on another server that is down, it can return to its client
a rule instructing the client to contact the second server:
the client may decide to contact the second server at a later
time. Second, they allow a server to offer a range of qual-
ities of service: for high-paying customers the server might
evaluate the query in full, including subqueries to remote
sites, and return a set of tuples; for others it might perform
only partial query evaluation, and return a combination of
tuples and rules. Finally, intensional answers may improve
overall bandwidth utilization, since they can be smaller than
extensional answers.

In this paper we develop a framework for studying possi-
ble query evaluation techniques in the presence of dynamic
site discovery. We present a query evaluation paradigm in
which pairs of servers communicate by exchanging messages:
a query is sent, and an intensional answer is returned. A
server has many alternatives for constructing the intensional
answer for a given query: we give a precise definition of what
constitutes a correct answer. We explore the entire space of
alternatives a server has in constructing a correct answer, by
describing a generic, nondeterministic evaluation algorithm,
whose possible runs return all answers in this space. We
prove that all answers returned by the algorithm are correct.
Then we show that particular deterministic algorithms, im-
plementing specific optimizations, correspond to particular
runs of the generic algorithms, hence they are correct too.

We started by studying query evaluation with site discovery
for a non-recursive query language, similar to SQL. We soon
discovered however that query evaluation in this new setting



is deeply and intimately connected to recursion, for three
reasons. First, recursion may be impossible to prohibit: the
Web is not under centralized control, and one cannot con-
strain what links other sites may have. Second, it is difficult
to detect: sites are unknown in advance, so recursion must
be detected dynamically. Finally, we have found some ap-
plications, such as security infrastructures, where recursion
arises naturally and inevitably. For example, public key di-
rectories are often built by delegation to a trusted party. A
public key directory s1$PKD may be defined by rules giv-
ing some locally known public keys, and a rule saying that
it includes (trusts) all public keys from a directory s2$PKD .
In turn, s2 may store locally some public keys it knows, and
have a rule saying that it trusts all keys from s1; this is
an example of mutual trust. Notice that the recursion here
occurs at the global level, not at one particular server. We
chose the language d3log in order to be able to model such
global recursive behaviors.

Intensional answers have been considered before [12, 19],
in the context of centralized, but not distributed, data-
bases. The main motivation was that an intensional answer
is often more informative than an extensional one. For ex-
ample, given the query “find all empoyees whose salary is
< 100000,” the answer “all employees” is more informative
than a long enumeration of tuples. The challenge there is
to find the most concise intensional answer. In our setting,
intensional answers are used in the context of distributed
data, and the criteria for what is the “best” answer may
depend on the distribution. For example, a natural place to
stop evaluation and return an intensional answer is at refer-
ences between sites, even though this may not give the most
concise answer. Thus, we want to permit servers to return
a range of answers, all the way from completely extensional
(full evaluation) to completely intensional (return the local
program).

The rest of the paper is organized as follows. In Section 2, we
define d3log and its semantics, and we give some examples
in Section 3. In Section 4, we introduce our distributed
evaluation paradigm, and in Sections 5 and 6, we describe
a variety of evaluation algorithms. In Section 7, we show
how standard optimization techniques can be modified to
handle dynamic site discovery. We discuss related work in
Section 8, and we conclude in Section 9.

2. D3log
Syntax
We assume an infinite domain of constants, D, and a fixed
collection of relation symbols, R1, . . . , Rm. We use w, x, y, z
for variables, s for constants, and let t range over variables
and constants. An atom a has the form t$R(t1, . . . , tn): the
intuition is that R(t1, . . . , tn) “holds” at site t. We say t is
the site of t$R(t1, . . . , tn), and an atom a is site determined
if its site is a constant. A rule has the form

a :– a1, . . . , an (1)

where n ≥ 0 and a is site determined. Following standard
terminology, a is called the head, a1, . . . , an the body, and
when n = 0 the rule is called a fact. We use f to range
over facts, and by convention, we treat a fact, a :–, and
its head, a, interchangeably. A program, P, is a finite set
of rules. We depart from datalog and blur the distinction

between data and program, letting P hold both the facts
(data) and the rules (program); we don’t distinguish be-
tween edbs and idbs. We denote by Ps the rules at site s,
i.e., those rules in P whose heads have site s; since P is
finite, only finitely many sites hold rules. A query is a site-
determined atom, q. We denote by inst(q) the set of facts
that are instantiations of q. For example, if q = s3$R(x, 5),
then inst(q) = { s3$R(1, 5), s3$R(2, 5), . . . }.

Models, Semantics
There is a canonical translation of a d3log program P into
a datalog program Pg called the global datalog program:
each n-ary relation name R is translated into an (n + 1)-
ary relation name Rg, and each atom t$R(t1, . . . , tn) into
Rg(t, t1, . . . , tn). We define a model of P to be a model of
(the datalog program) Pg; in this paper we equate a model
with a set of facts, F , but use d3log syntax for facts in F ,
writing, e.g., s3$R(1, 5) instead of Rg(s3, 1, 5). As usual,
the semantics of P is its minimal model, F ; alternatively,
F = { f | P |= f }. The (extensional) answer to a query q is
the set of facts in F that are instances of q (i.e., inst(q)∩F).

D3log does not add expressive power to datalog. Our inter-
est in d3log lies in studying evaluation algorithms that take
the distribution into account.

Site-safe rules
Recall that a datalog rule is safe if all variables in the
head also appear in the body [23]: this ensures that the
program’s semantics is finite. D3log requires a stronger
safety rule: the rule in Eq. (1) is site safe if it is safe
and for every atom ai = x$Ri(. . .) that is not site deter-
mined, the variable x occurs in some earlier atom aj (i.e.,
aj = tj$Rj(. . . , x, . . .) and j < i). In particular, the first
atom, a1, is always site determined. For instance, the rule
s$Q(x, y) :– s$R(x, z), z$S(z, y) is site safe. Rules such as
s$Q(x) :– x$R(y), y$R(x) and s$Q(x) :– x$R(x) are not
site safe, although their corresponding global rules are safe.

Site safety is needed because of the restricted means by
which a site can learn about the existence of other sites.
For a datalog program, P, the active domain, adom(P), is
the set of all constants occurring in P. If P is safe, then its
semantics is the same under the standard (infinite) domain
D or the (finite) active domain. In d3log, however, no sin-
gle site s can compute the entire active domain, but only
that part “accessible” from s, denoted adoms, and defined
recursively as follows: adoms consists of adom(Ps) plus all
constants in adoms1 , for each s1 ∈ adoms. Obviously, for
every site s, adoms ⊆ adom(P), and the inclusion may be
strict. We can prove that d3log enjoys a property similar to
datalog: if P is site safe, then the answer to a query q at
site s is the same under the standard domain, D, and under
the accessible active domain at s, adoms. Hence, in the rest
of the paper we will assume site safe programs and a finite
domain.

As a side comment, we note that our definition of site safety
is a form of range restriction [1], and that it relies on a
certain order in the body of Eq. (1), which is equivalent to
a join order. The results in this paper are not affected by
the particular choice of join order. Choosing an order is



essentially a join-order optimization problem, and is beyond
the scope of our paper.

3. EXAMPLES
We illustrate a few real applications that can be modeled in
d3log.

Security infrastructures
SD3 [13] and its predecessor, QCM [9, 10, 11], are systems
for building secure nameservers, public key directories, and
distributed repositories of security policies. In SD3, cryp-
tographic principals take the place of d3log sites: a typical
principal is a pair s = k@i consisting of a public key k
and an Internet address i. Principals make it possible to
communicate securely over untrusted networks like the In-
ternet. For example, Q(x) :– s$PKD(Alice, x) is a query
that securely obtains Alice’s key from a public key direc-
tory (PKD) by an exchange of signed messages with the
principal s. The server for s$PKD controls the private key
corresponding to the public key k, and signs all responses
with that key; the client has the public key k and can there-
fore verify that the response has not been tampered with on
the untrusted network. In this way, knowledge of a single
key can be bootstrapped into knowledge of many keys (from
s$PKD), solving the public key distribution problem.

In SD3, a public key directory associates names with prin-
cipals. For example, Alice can define a PKD with rules

sAlice$PKD(Alice, sAlice) :–
sAlice$PKD(Bob, sBob) :–
sAlice$PKD(x, y) :– sAlice$PKD(Bob, z), z$PKD(x, y)

Alice’s PKD includes her own key (principal), sAlice, and
her friend Bob’s key, sBob. Furthermore, Alice trusts Bob
and would like to be able to communicate securely with his
friends, so she includes his PKD in her own. Of course, since
Alice and Bob are friends, Bob may want to include Alice’s
PKD in his PKD; this kind of recursion is commonplace.

DNS
The Domain Name System, or DNS, is the distributed data-
base that maps Internet host names to numerical IP ad-
dresses. This mapping is defined by many different name-
servers, each responsible for part of the mapping. Name-
servers are organized hierarchically, following the hierarchy
of domain names. We show one way that the behavior of
DNS can be modeled in d3log: for brevity the illustration
here is a simplification, but we give a more accurate model
(which we have implemented) in the Appendix.

Below, we show a fragment of the program for the name-
server at IP address 198.41.3.38, which is in charge of the
domain .com:1

198.41.3.38$DNS(x, y) :– 198.41.3.38$NS(x2, y2),
x2 < x, x2$DNS(x, y)

198.41.3.38$NS(att.com, 192.128.133.77) :–
198.41.3.38$NS(ibm.com, 198.81.209.2) :–
. . .

1We give the addresses of the actual nameservers, as of De-
cember 2000.

This server knows the IP addresses of all the nameservers for
subdomains of .com, including att.com and ibm.com. These
addresses are stored in a local table, NS . For example, the
second rule says that 192.128.133.77 is the IP address of
the nameserver in charge of the att.com subdomain. This is
encoded in the first rule, which simply says that a request for
the IP address y of a given name, x, can be answered by the
nameserver in charge of x. For example, if the nameserver
receives a query,

198.41.3.38$DNS(www.att.com, y),

then it can return the following rule as an answer:

198.41.3.38$DNS(www.att.com, y) :–
192.128.133.77$DNS(www.att.com, y)

The client can then contact the server for att.com (and that
nameserver can supply the IP address directly). Alternately,
the nameserver could query the att.com nameserver itself,
and return the response. Both of these evaluation strategies
are possible in DNS, where they are known respectively as
iterative and recursive resolution.

LDAP directories
An LDAP directory is a lightweight database with a hierar-
chical data model. Data is organized as a tree, where the
nodes are called entries. LDAP servers are usually intercon-
nected: a leaf node in one server may contain the address of
another server. Such a leaf node is called a reference, and
the semantics is that the entire tree at the other server is
inserted at that leaf node. This behavior is similar to DNS,
where a nameserver has references to other nameservers, and
it can be modeled in d3log similarly. As in DNS, queries on
distributed LDAPs can be evaluated in two modes. In refer-
ral mode, when the server encounters a reference node, that
node is simply returned to the client, who then has to con-
tact the other server. In chaining mode, the server contacts
the other server on behalf of the client.

XML
An XML document may contain references to other XML
documents: such a reference is called an XLink. The refer-
ence can be a small query, in a language called XPath, that
can specify arbitrary navigation in the target XML docu-
ment. The meaning is, again, that the target subtree is to
be inserted in place of the XLink expression. This behavior
can also be expressed in d3log. When an XML query at-
tempts to traverse an XLink, the server may either return
the entire XPath expression to the client (referral mode), or
send an appropriate query to the other site (chaining mode),
or fetch the remote XML subtree and evaluate the query lo-
cally.

4. DYNAMICALLY DISTRIBUTED EVAL-
UATION

The novelty in d3log lies in its distributed evaluation para-
digm. Given a distributed program P, evaluation is initiated
when a user asks a query q at some server s. We call a server
evaluating a query a client, hence s is a client. Recall that
s has a local program, denoted Ps. During evaluation, mes-
sages are exchanged between pairs of sites. Each message
involves a query (a site-determined atom) or an answer. The
answer may be an arbitrary d3log program: an intensional



answer. This generalizes answers in standard distributed
databases [14, 18], which may only contain data: we call
those extensional answers. The client alternates between
evaluation and communication. It starts with the program
Ps and performs some evaluation. At some point it sends
some query q1 to a server s1 and receives an intensional
answer A1, that is added to Ps. After more evaluation, it
sends some other query q2 to another server s2, and receives
an intensional answer A2, etc. Eventually, the client de-
cides to halt and returns an answer A as response to the
original query q. The servers s1, s2, . . . need not be distinct:
the client may contact a server multiple times, e.g., by re-
questing different queries. Evaluation of a query qi at a
server si proceeds in similar fashion: si becomes the client,
and proceeds in a series of evaluation and communication
steps, eventually returning Ai.

We assume that all messages are synchronous, and hence
the evaluation is sequential. This is a limitation, but it is
not essential. The techniques described in this paper extend
to asynchronous messages and parallel evaluation.

Our interest lies in the dynamic nature of this evaluation
paradigm. One dynamic aspect is that the set of sites is
not known in advance: a server may learn about new sites
as the evaluation progresses. Another aspect is that the
answer to a query may be intensional, i.e., a program as
opposed to data. As we have seen, applications like DNS,
LDAP, and XML exhibit some form of intensional answers,
and in addition, intentional answers are the technical means
by which we evaluate recursive distributed programs.

Correct Answers
Since a server has the freedom to return a variety of an-
swers in response to a query, one may ask what constitutes
a “correct” answer.

As usual, correctness can be broken down into two com-
ponents, soundness and completeness. Soundness simply
means that the answer should not lead the client to derive
wrong facts. Completeness is more subtle. It is tempting to
say simply that a complete answer must provide all of the
information the client needs to answer the query. However,
this intuition is not appropriate in a system that permits in-
tensional answers: consider that an intensional answer may
direct the client to contact another site. Such an answer
clearly does not provide all of the information the client
needs to answer the query.

Instead, we use the following intuition for completeness:
when a client asks a server a query q, it should receive an
answer that guarantees that it does not have to ask the
server the query q (or any instance of q) again. Formalizing
this intuition is tricky, however, as we show by the following
example.

Consider a program P distributed over two sites, s1 and s2:

s1$R(1) :– s2$R(1) :–
s2$R(2) :–

s1$R(x) :– s2$R(x) s2$R(x) :– s1$R(x)

If a client asks site s1 the query q = s1$R(x), what are
the intensional answers that s1 is allowed to return? Fol-

lowing our intuition, the extensional answer to the query,
Fq = {s1$R(1), s1$R(2)}, should be considered a complete
answer, as should the full program Ps1 of s1.

But consider a more interesting case: the answer A1 =
{s1$R(x) :– s2$R(x)}. Should it be considered complete?
By one account it should, since the client is instructed to
contact site s2, which holds both facts s2$R(1) and s2$R(2)
that, together with A1, would allow it to infer all facts in
Fq. But then, by a similar reasoning, when the client asks s2

the query s2$R(x), the answer A2 = {s2$R(x) :– s1$R(x)}
would be complete too (since it instructs us to contact s1,
which holds the fact s1$R(1) and can infer s1$R(2)). How-
ever, if the client has only A1 and A2, it cannot obtain the
desired answer Fq without again asking the query s1$R(x)
or s1$R(x). So, A1 and A2 should not be considered com-
plete, because they force the client to ask the same queries
again.

This shows that the definition of completeness must take
into account the rules R that the client is gathering from
other sites. Completeness should say that the answer A,
together with the rules R, should allow the client to infer
all of the facts in Fq; that is, R ∪ A |= Fq. So, we need to
consider the rules R more closely.

First, note that we cannot restrict R to be just the set of
rules at all the other sites, since there is no guarantee that
the client will gather exactly those rules; instead the defini-
tion will quantify over all sets R, i.e. completeness will be
something like ∀R.R ∪ A |= Fq. At the same time, there
must be some limitations on R: if the server could assume
nothing about the rules R, then the only complete answer
would be the extensional answer, A = Fq.

We reach a reasonable restriction on R as follows. We know
that, using R, the client may eventually derive all facts in F
(the minimal model of P). We also know that the client will
never ask queries about q again, hence R may not include
any of the rules about q, denoted Aq (more on this below).
Hence we can safely restrict R to be a set of rules for which
R ∪ Aq |= F , and the definition of completeness becomes
something like:

∀R. R∪Aq |= F =⇒R∪A |= Fq

We will prove later that the definition remains unchanged
if we replace Fq with F , hence we use the latter from now
on. We postpone for the moment the definition of Aq which
should capture everything the server knows about q. To
illustrate the definition on our example, take for the time
being Aq to be the set of all rules with s1$q(x) in the head,
i.e., Ps1 . Then we can see that A1 is not complete: choose
R to be Ps2 less the first rule. R satisfies the restriction
R∪Aq |= F , but R∪A1 6|= F , since R∪A1 6|= s1$R(1).

Before giving the formal definition of completeness and of
As, we need some additional notation. If R is a set of rules,
we write Mod(R) for the set of all models of R. We write
R1 |= R2 if every model of R1 is a model of R2. We use θ
to range over substitutions, mapping variables to constants;
substitutions are extended to atoms and rules in the usual
way. For any set R of rules and set Q of queries, we define
RQ to be the rules of R whose heads unify with some query



in Q:

RQ = { a :– a1, . . . , an | (a :– a1, . . . , an) ∈ R,
inst(a) ∩ inst(Q) 6= ∅ }.

In particular, if F is a set of facts, then FQ = F ∩ inst(Q).
For any set R of rules and set F of facts, we define R[F ] to
be the instantiation of R by facts in F :

R[F ] = { θ(a :– a1, . . . , an) | (a :– a1, . . . , an) ∈ R,
θ(a), θ(a1), . . . , θ(an) ∈ F }.

Definition 1. Let P be a d3log program with minimal
model F , and let Q be a set of queries. Let A be a set
of rules (not necessarily a subset of P), intended to be the
answer to the queries Q.

1. A is sound if F ∈ Mod(A).

2. A is program-complete for Q if for any set of rules R,
if R∪ P[F ]Q |= F , then R∪A |= F .

3. A is model-complete for Q if ∀F ′ ⊆ F , if F ′ ∈ Mod(A)
then F ′ ∈ Mod(P[F ]Q).

Program-completeness captures our intuition above, for the
case when Q = {q}. Continuing our earlier discussion, we
note that the definition uses P[F ]{q} for “set of rules about
q”, Aq. These are not all rules at s whose head unifies with
q: instead, they are all ground instances of rules at s whose
head are instances of q (more on this below). In particular,
P[F ]Q is a sound and complete answer to the query Q, and
can be thought of as a canonical answer that the server s
may return.

Model-completeness offers an alternative definition and is
equivalent to requiring that, if some new fact f ∈ F can be
derived from other facts F ′ ⊆ F using a canonical complete
answer (i.e., P[F ]Q), then f should be derivable from F ′
using the answer A. To see this, in one direction we argue
that, if F ′ 6∈ Mod(P[F ]Q) then there exists f 6∈ F ′ s.t.
F ′ ∪ P[F ]Q |= f , hence F ′ ∪ A |= f : the latter implies
F ′ 6∈ Mod(A). For the other direction, if F ′ ∪ P[F ]Q |= f
but F ′ ∪ A 6|= f then we denote F ′′ the minimal model of
F ′∪A, and have f 6∈ F ′′ and also F ′′ ∈ Mod(P[F ]Q), hence
F ′ ∪Mod(P[F ]Q) 6|= f , which is a contradiction.

Why not choose Aq to be all rules at s whose head unifies
with q ? This would correspond to replacing P[F ]Q with
PQ in the definition of program completeness. But the
resulting definition would be too restrictive, making even FQ
an incomplete answer. For example, consider the following
single site program P:

T (1, 2) :–

T (x, y) :– T (y, x)

Let Q consist of the single query T (1, x), and let A be its
extensional answer, A = {T (1, 2)}. Here PQ = P. If R = ∅,
we haveR∪PQ |= F , butR∪A 6|= F (because A 6|= T (2, 1)).
The problem is that PQ includes rules that allow us to infer
facts that are not about Q. This problem disappears if we
use P[F ]Q = {T (1, 2), (T (1, 2) :– T (2, 1))}: then R = ∅ no
longer satisfies R∪ P[F ]Q |= F .

Similarly, we might have tried to use FQ as the canonical
complete answer, but doing so would have resulted in an
overly restrictive definition too, this time making Ps an in-
complete answer. This is illustrated by the example program
P of the previous page, which has minimal model

F = {s1$R(1), s1$R(2), s2$R(1), s2$R(2)}.

If we letQ = {s1$R(x)}, then FQ = {s1$R(1), s1$R(2)} and
P[F ]Q = {s1$R(1); s1$R(1) :– s2$R(1); s1$R(2) :– s2$R(2)}.
If R = {s2$R(x) :– s1$R(x)}, then R ∪ FQ |= F . But
R ∪ Ps1 6|= F , because the minimal model of R ∪ Ps1 is
{s1$R(1), s2$R(1)}, and this is not a model of F . So Ps1

would not be a complete answer. The problem disappears
with P[F ]Q, because R∪ P[F ]Q 6|= F .

Program-completeness and model-completeness have inde-
pendent justifications and seem unrelated. A perhaps sur-
prising result is the fact that they are equivalent.

Theorem 2. Program-completeness and model-complete-
ness are equivalent notions.

The proof is given in the appendix. An examination of the
proof shows two facts about program-correctness. First, an
equivalent formulation is obtained by replacing the last F
with FQ: for all R, if R ∪ P[F ]Q |= F , then R ∪ A |= FQ.
Second, one can further restrict the set of rules R to contain
only closed rules of the form a0 :– or a0 :– a1, with a0, a1 ∈
F .

Since the two notions of completeness are equivalent, we will
use just “completeness” in the sequel, and will refer to the
definition of program-completeness or model-completeness
as convenient.

We say that A is correct for Q if A is sound and complete for
Q. Correctness serves as a fundamental protocol between a
client and servers: the client assumes that all servers return
correct answers to queries (the Correctness Assumption)
to prove its program correct. Sometimes we settle for sound-
ness only, i.e., servers are assumed to return sound answers
to queries (the Soundness Assumption).

Example 3 We illustrate here how computation steps can
be interleaved with communication steps. Consider a query
q = s$R(u, v). Assume that the program at s, Ps, is:

s$R(x, u) :– s$T (x, y), s$T (y, z), z$Q(u)
s$T (s1, s2) :–
s$T (s2, s3) :–
s$T (s2, s4) :–

The first rule alone forms a correct answer, and we could
return it thus without doing any computations. An an-
swer that involves some computation, but no communica-
tion, performs the join in the first rule:

A1 = { s$R(s1, u) :– s3$Q(u)
s$R(s1, u) :– s4$Q(u) }

We will show in the next section that A1 is correct. Another
answer involves the same computation, plus queries to sites



s3 and s4. Assume that, in response to the query s3$Q(u),
site s3 returns the answer s3$Q(s5). Further, in response
to the query s4$Q(u), site s4 returns the answer s4$Q(u) :–
s5$T (u, v). Then the following is also a correct answer:

A2 = { s$R(s1, s5) :–
s$R(s1, u) :– s4$Q(u)
s4$Q(u) :– s5$T (u, v) }

We will show in the next section that A2 is also correct.

We end this section with some simple facts that are proven
in the appendix.

Proposition 4. Soundness has the following properties:

1. If A ⊆ P then A is sound.

2. If A1 and A2 are sound then so is A1 ∪ A2.

3. If A is extensional then A is sound iff A ⊆ F .

Proposition 5. Completeness has the following proper-
ties:

1. If PQ ⊆ A then A is complete for Q.

2. If A1 is complete for Q1 and A2 is complete for Q2

then A1 ∪ A2 is complete for Q1 ∪ Q2.

3. If A is extensional then A ∩ F is complete for Q iff
FQ ⊆ A.

Item 1 of Prop. 5 implies that any set of rules A is com-
plete for Q = ∅. Together with 2 this implies that if A is
complete for Q then A ∪ A′ is also complete for Q, for any
A′. Finally, Prop. 4 item 3 and Prop. 5 item 3 mean that
if A is extensional, then A is sound and complete for Q iff
FQ ⊆ A ⊆ F .

5. GENERIC EVALUATION ALGORITHM
We describe here a generic evaluation algorithm computing
an answer A in response to a query q at a site s. The algo-
rithm is non-deterministic, and may return several answers
A: we prove that all are correct. We use this generic al-
gorithm to show in the next section that various determin-
istic algorithms, implementing different evaluation strate-
gies and different optimization techniques, return correct
answers, by showing that they correspond to particular runs
of the generic algorithm. Thus, the generic algorithm offers
a powerful tool for showing that various concrete algorithms
return correct answers.

Let P be a d3log program, and let Ps be the fragment at
site s. The algorithm proceeds in a series of steps. Each
step i computes two sets: RCi, a set of rules called the rule
cache, and QSi, a set of atoms called the query set. Start
with RC0 = Ps, and QS0 = ∅. At each step i, i > 0,
the algorithm either inserts new elements into RCi or QSi,
or stops. When inserting in RCi and QSi we adopt the

convention that two rules (or queries) are equal if they are
equal up to variable renamings. Before describing step i,
we need some terminology. We say that QSi covers a site-
determined atom a1 if the site in a1 is s or there exists some
atom a ∈ QSi and some substitution θ s.t. a1 = θ(a).

Step (i+1) nondeterministically chooses one of the following
three actions:

Evaluate. Choose a rule r : a0 :– a1, . . . , an and a fact a :–
in RCi such that QSi covers a1, and a = θ(a1) for
some substitution θ. Define a new rule r′ : θ(a0) :–
θ(a2), . . . , θ(an), and define

QSi+1 ← QSi, RCi+1 ← RCi ∪ {r′}.

This action is triggered only if r′ 6∈ RCi.

Communicate. Choose a rule r : a0 :– a1, . . . , an in RCi

such that QSi does not cover a1. Let s1 be the site of
a1. Send query a1 to site s1, wait for the answer A1,
and define

QSi+1 ← QSi ∪ {a1}, RCi+1 ← RCi ∪ A1.

Stop. Stop and return as answer A = RCi.

Evaluate encapsulates traditional selection-join query eval-
uation; for instance in Example 3, the join in first rule is per-
formed by first unifying the first atom (s$T (x, y)) with all
the facts about T , then unifying the second atom (s$T (y, z))
with all these facts. Communicate sends a query to an-
other server, then records that query in QS to avoid sending
it later again.

A few observations. In the Evaluate step, the new rule r′

is site safe, if the original rule was site safe: it follows by
induction that all rules in RCi are site safe. In the Com-
municate step, the site of a1 is a constant (not a variable)
since the rule is site safe.

Our first result is termination. For that we assume that
all queries are answered in finite amount of time (this is a
strong assumption: more on that in the next section).

Theorem 6. The generic server algorithm always termi-
nates, i.e., there are no infinite runs.

The proof is given in the Appendix and uses the fact that
the accessible active domain is finite.

Next, we prove a crucial property: that at each step i of the
algorithm a certain invariant holds.

Theorem 7. Under the Soundness Assumption, RCi

is sound. Under the Correctness Assumption, RCi is
correct for {q} ∪QSi.

Proof: by induction on i. For the base case, recall that
RC0 = Ps and QS0 = ∅, and by Props. 4(1) and 5(1), Ps



is correct for {q}. The inductive case has two subcases. If
RCi+1 results from an Evaluate step, then QSi+1 = QSi

and RCi+1 = RCi ∪ {r}, where r is a logical consequence
of RCi, and hence, soundness and completeness are pre-
served as a consequence of Props. 4 and 5. If RCi+1 results
from a Communicate step, then QSi+1 = QSi ∪ {q′} and
RCi+1 = RCi∪A, where (under the Soundness Assump-
tion) A is sound or (under the Correctness Assumption)
A is correct for {q′}. Under the Soundness Assumption,
Prop. 4(2) implies that RCi+1 is sound; under the Cor-
rectness Assumption, Prop. 4(2) implies that RCi+1 is
complete for QSi+1. End proof.

Correctness of the generic algorithm follows from the Theo-
rem.

Corollary 8. Under the Soundness Assumption, any
answer A returned by the generic algorithm is sound. Un-
der the Correctness Assumption, any answer returned is
correct for the input query q.

Corollary 8 and the definitions of soundness and complete-
ness show that, when used by the user (who expects an
extensional answer, i.e., facts only, no rules), the generic
algorithm returns a correct answer:

Corollary 9. Let A be an extensional answer to the
query q returned by the generic algorithm. Under the Sound-
ness Assumption, A ⊆ F . Under the Correctness As-
sumption, F{q} ⊆ A ⊆ F .

An Important Optimization
Consider the last two rules in answer A2 from Example 3:

s$R(s1, u) :– s4$Q(u) s4$Q(u) :– s5$T (u, v)

When the client receives them it doesn’t know that the
last rule is complete for the query s4$Q(u): instead it will
send the query s4$Q(u) to server s4 again, duplicating the
work done by s. To avoid this, we modify the distributed
evaluation paradigm to let servers notify clients about all
the queries their answers are complete for. Luckily, we
have all the machinery in place already. The response to
a query q consists now of both an answer A and a set
of queries Q, s.t. q ∈ Q and A is correct for Q. The
generic algorithm is extended to return both A = RCi and
Q = {q} ∪ QSi in the Stop action. The Communicate
action is modified to expect a reply (A1,Q1), and QSi+1

becomes QSi ∪ Q1. Theorems 6 and 7 remain unchanged.
This simple extension is quite powerful in eliminating du-
plicate work. Returning to Example 3, in the case of A2

the answer returned to the client would consists of both A2

and Q = {s$R(u, v), s4$Q(u)}. This tells the client that A2

already contains everything needed to answer s4$Q(u), and
that it should not contact s4 again if it needs the query in
the future.

Reducing the size of intensional answers
The following proposition offers some simple methods to re-
duce the size of an intensional answer by deleting some of
the rules.

Proposition 10. Let P be a d3log program, Q a query
set, A a set of rules, and r ∈ A. (1) If A is sound, then
A − {r} is sound. (2) If A is correct for Q and r 6∈ AQ
then A − {r} is correct for Q. (3) Let r be of the form
a0 :– a1, . . . , an, n > 0, s.t. Q covers each of a1, . . . , an,
and the facts in A are closed under applications of r. Then
A− {r} is also a correct answer for Q.

We can now show that A1 and A2 in Example 3 are correct.
Answer A1 is obtained by executing Evaluate only, until no
more changes are possible, then applying Prop. 10 to elim-
inate redundant rules. A2 is obtained by allowing, in ad-
dition, Communicate to execute on two queries, s3$Q(u)
and s4$Q(u), but not on the fourth query, s5$T (u, v).

6. APPLICATIONS
Query evaluation in distributed databases
In distributed databases [18, 14], usually the query expres-
sion sent to a site s is a SQL expression (or a logical plan),
rather than an atom. We can model that in d3log by assum-
ing that s defines a view q whose body is that expression,
and the client asks for that view. Hence Ps has a single rule
defining the view q, and all atoms in the body have site s.
Query evaluation is performed locally, and an extensional
answer A is returned. This corresponds to a particular run
of the generic algorithm where only the Evaluate action is
performed, until no more changes are possible (followed by
repeated applications of Prop. 10 to eliminate all facts other
than those in inst(q)). It follows that A is correct.

Failed communications
Some query request may never be answered due to server
or network failure. We can modify the generic algorithm to
cope with lost messages. In Communicate, after a certain
timeout, we abort the request and let A1 = ∅. Since ∅ is
always a sound answer (but not necessarily complete), the
answers returned by the modified algorithm are still sound.

Intensional Answers
When a site s receives a query q, it can immediately return
its entire program, Ps. This is guaranteed to be a correct an-
swer (by Props. 4 and 5). This is a form of referral because,
in general, the program Ps can contain rules that refer to
another site. In the database literature this has been called
an intensional answer [12, 19] (in this paper we use the term
intensional in a broader sense), and in the security literature
it has been called a hint [15].

Answering with Ps can be inefficient in general: much of
Ps may be irrelevant to the query. For certain applications
however this may be a reasonable option. For example, in
security applications, a server may refuse to evaluate a query
from an untrusted client (to avoid a denial of service attack)
and return its program instead: often that program simply
contains references to other servers, which the client must
then contact. Furthermore, Prop. 10 may be used to reduce
the size of the intensional answer, if desired.

Naive Chaining
In a chaining algorithm, a server s that receives a query
may query another site s1; that, in turn, may send a query



to a site s2. Eventually, a new query may be sent to s, in-
directly on behalf of its own request. It is easy to extend s
to run multiple threads of the generic algorithm, to handle
new requests while old ones are suspended. The problem is
that chaining creates the possibility of loops, and some form
of loop detection will be needed to ensure termination. (Re-
call that Theorem 6 assumed that each query is answered
in finite time; this fails, of course, in the presence of loops.)
Loops are prohibited in DNS and LDAP: the data is sup-
posed to be arranged in a tree and form no cycles. In XML,
however, XLinks may form cycles, and loop detection is nec-
essary. We illustrate here a simple loop detection method.

We modify the naive chaining algorithm by tagging each
query q sent to a server s with a set S of sites that are waiting
for q to terminate. Every time a Communication step is
attempted, the algorithm first checks the destination site s1.
If s1 6∈ S, then the Communication step is executed. If
s1 ∈ S then the step is not executed, since that may result
in a loop. Obviously both choices are legal in the generic
algorithm, hence the answer returned by s is still correct
(assuming all other servers return correct answers). This
trivially detects loops, hence avoids nontermination (Thm. 6
applies). It is also a naive detection method: more complex
methods are possible, but beyond the scope of this paper.

7. OPTIMIZATIONS
Standard optimization techniques can be used to speed d3log
evaluation, but they may need to be modified to take dy-
namic site discovery into account. We use magic set rewrit-
ing [2, 3] as a canonical example.

Suppose a site s receives a query s$R(5, y) and its program
Ps contains a single idb rule

s$R(x, y) :– s$E(x, w), w$R(y, 6),

where s$E is an edb relation. Our bottom-up algorithm does
not compute the answer to the query efficiently: it computes
the entire relation s$R before selecting those tuples with 5
in the first position as the answer to the query.

Magic set rewriting is a datalog optimization that produces a
more efficient program for computing the query. We suggest
the following as a magic set rewriting of our d3log program:

s$R(5, y) :– s$Rbf (5, y)
magic(5) :–
s$Rbf (x, y) :– magic(x), s$E(x, w), w$R(y, 6)

This introduces a new relation, s$Rbf , useful for comput-
ing tuples of s$R whose first position is known (bound) and
whose second position is unknown (free). Intuitively, the
bottom-up algorithm will evaluate this program faster than
the original program, because it will only compute those
tuples of s$R with 5 in the first position. Because of dy-
namic site discovery, however, it is possible that the algo-
rithm will have to compute more tuples of s$R. For exam-
ple, if s$E(5, s) holds, then by the rule for s$Rbf , we need
to compute s$R(y, 6). In datalog, this would mean that we
should have included rules for a relation s$Rfb that would
push the selection of 6 into the second position of s$R.

In the case of d3log, the need for s$Rfb could not be deter-
mined without examining the contents of the edb relation

s$E, and, in general in d3log, it might require propagating
the magic set rewriting across sites. Our approach is to de-
fer this work until we know that it is necessary. This can
be accomodated by the following slight modification of the
naive chaining algorithm. When a site s receives a query q,
it performs our variant of magic set rewriting on Ps w.r.t. q.
This results in a program C that is used as the initial state
of a modified version of the naive client algorithm. The site
sets QS0 to {q}. The algorithm is modified to treat s like
a remote site—that is, in step i it may send a “query” to
s if that query is not covered by the query set. The site s
handles such a “query” by performing magic set rewriting
on the query and its program Ps, and using the result as its
“reply.”

Going back to our example, when the algorithm finds it
needs to compute s$R(y, 6), it finds it is not an instance
of the original query s$R(5, y), so it causes the “query”
s$R(y, 6) to be sent to s, which replies with the magic set
rewriting

s$R(y, 6) :– s$Rfb(y, 6)
magic2(6) :–
s$Rfb(x, y) :– magic2(y), s$E(x, w), w$R(y, 6)

So, now the rule cache holds a bigger magic set rewriting.

Our technical machinery can easily be extended to acco-
modate magic set rewriting; with some slight additions to
handle fresh relation names, all of our lemmas and theorems
continue to hold.

8. RELATED WORK
Distributed databases have been an active area of research
since the early 80’s, and today every database vendor offers
support for them. We refer to [18] for a textbook and [14]
for an overview of the current state of the art.

Distributed evaluation of datalog programs poses additional
challenges due to recursion. Early work [8] focused on par-
allelizing a centralized datalog program, to speed up eval-
uation. Each rule is sent to a different site responsible for
firing that rule, and sites exchange tuples, cooperating in
the computation of the least fixpoint. Other approaches to
parallelization attempt to reduce the number of communi-
cations by probabilistic methods [16] or by preanalyzing the
data [6]. In other work [25, 17], the setting is closer to ours,
in that edbs and/or the datalog program are distributed a
priori. Evaluation proceeds in parallel, with each site evalu-
ating a local fixpoint, then exchanging data with other sites,
then resuming the evaluation. A major component of this
approach is termination detection. In all these cases, the
information exchanged between sites consists of data only,
and no intensional answers are considered.

Intensional answers in response to queries over datalog pro-
grams are considered by Imielinski [12], and are motivated
both conceptually and computationally. Conceptually, an
intensional answer is sometimes more informative than a ta-
ble. Computationally, an intensional answer may be much
smaller than the table and permits the computation to mi-
grate from the server to the client, which is useful in some
applications. Imielinski’s techniques go beyond what the
generic algorithm in Sec. 5 can do, and aim at producing



the “most intensional answer” possible, ideally consisting of
a datalog program whose unique idb is the query predicate.
By contrast, in our work we are concerned with describing
a large space of possible answers, and letting a server apply
optimization techniques to choose the best one. This space
could be extended with the techniques in [12]. Another ap-
plication of intensional answers are parachute queries [4],
which are used in a mediator based data integration system
when one of the sources is unavailable.

Our work was directly motivated by QCM [9, 10, 11], a
system for building security infrastructures. As explained
in Sec. 3, answers in QCM are signed, so the client can
verify that the answer indeed comes from the correct server.
Signing, of course, requires a private (secret) key, and it
is sometimes considered a security threat to keep a private
key on a machine accessible from the open Internet. For
this reason, sometimes QCM servers do not have access to
private keys, but rather to certificates, which are pre-signed
documents whose contents are the rules of the server. Such
a server can answer queries with certificates; so certificates
are another motivation for intensional answers. In addition,
a QCM client may be asked to evaluate a query using a
certificate. For example, if a QCM client is given a document
“K$PKD(Alice, KAlice) :–” signed by the private key of K,
it can evaluate the query Q(x) :– K$PKD(Alice, x) without
sending a message to K.2 This is essentially the problem of
answering queries using views [7, 24] or caches [20, 5], and
it can be applied to d3log as well. D3log extends QCM by
treating recursion and intensional answers; SD3 [13] is the
secure extension of d3log, and is the successor of QCM.

Another novel approach to distributed query evaluation can
be found in [21, 22], where a distributed query plan is ex-
pressed in terms of the pi calculus.

9. CONCLUSION AND FUTURE WORK
We have described a new distributed query evaluation par-
adigm for the Web, modeling dynamic site discovery. Its
salient feature is that now servers may return an intensional
answer in response to a query, as opposed to data only. A
server has numerous alternatives for constructing the inten-
sional answer for a given query: we have defined what a
correct answer means, and described a generic nondetermin-
istic algorithm that encapsulates several such choices. We
proved that all runs of the nondeterministic algorithm re-
sult in a correct answer, and applied that to showing that
specific optimization strategies produce correct answers.

An optimizer at a server would normally choose a best plan
for computing an intensional answer based on a variety of
factors, including data statistics, server state, and user pro-
file. Such an optimizer is part of future work. What we have
achieved here however is a guarantee that such an optimizer
will return a correct answer, as long as the plan it generates
corresponds to some particular run of the nondeterministic
generic algorithm.
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APPENDIX
A. PROOFS
Proof of Theorem 2: Assume that A is model-complete
for Q. We prove the counterpositive statement of program-
completeness. Let R be s.t. R,A 6|= F . Let F ′ be some
model (e.g., the minimal model) of R,A that does not con-
tain F . Consider F ∩F ′: it is in Mod(A), hence (by model-
completeness) it is in Mod(P[F ]Q). We would like to show
that F ′ ∈ Mod(P[F ]Q). Indeed, take some rule r in P[F ]Q,
s.t. body(r) ⊆ F ′. We also have body(r) ⊆ F (by definition
of P[F ]), hence body(r) ⊆ F ∩F ′. Hence head(r) ∈ F ′. We
have shown F ′ ∈ Mod(P[F ]Q) and, since F ′ ∈ Mod(R) we
have F ′ ∈ Mod(R,P[F ]Q), hence R,P[F ]Q 6|= F .

Assume now that A is program-complete for Q. Let F ′ ⊆ F
s.t. F ′ ∈ Mod(A). We want to show that F ′ ∈ Mod(P[F ]Q).
Suppose not: then there exists a rule r ∈ P[F ]Q s.t. body(r) ⊆
F ′ and head(r) 6∈ F ′. Define R1 = { f :– head(r) | f ∈ F }.
Thus, R1 is a program whose rules say that if head(r) is
true, then everything in F is true. Define R = R1 ∪ F ′.
We have3 R ∪ A 6|= F because F ′ is a model of R ∪ A.
By program-completeness we must have R ∪ P[F ]Q 6|= F .
But this is not the case since F ′ ∪ P[F ]Q |= head(r), which
implies R∪ P[F ]Q |= F . End proof.

Proof of Prop. 5: We use model-completeness in all proofs.
(1) Let F ′ ⊆ F , F ′ ∈ Mod(A) ⊆ Mod(PQ). To show
F ′ ∈ Mod(P[F ]Q), let f be a fact s.t. F ′ ∪ P[F ]Q |= f .
Since P[F ]Q ⊆ PQ[F ] we have F ′ ∪ PQ[F ] |= f , hence
F ′ ∪PQ |= f , which means f ∈ F ′, because F ′ ∈ Mod(PQ).
(2) let F ′ ⊆ F , F ′ ∈ Mod(A1 ∪A2) = Mod(A1)∩Mod(A2).
For each i = 1, 2 we have F ′ ∈ Mod(Ai), hence F ′ ∈
Mod(P[F ]Qi). We have P[F ]Q1∪Q2 = P[F ]Q1 ∪ P[F ]Q2 ,
hence Mod(P[F ]Q1∪Q2) = Mod(P[F ]Q1) ∩ Mod(P[F ]Q2),
hence F ′ ∈ Mod(P[F ]Q1∪Q2). (3) First assume FQ ⊆
A. If F ′ ⊆ F , F ′ ∈ Mod(A ∩ F) then the latter implies
A ∩ F ⊆ F ′, while the former implies FQ ⊆ F ′, hence
F ′ ∈ Mod(P[F ]Q). Now assume A ∩ F is complete for Q.
Suppose FQ 6⊆ A ∩ F , and let f ∈ FQ − A ∩ F . Define
F ′ = F − {f}. We have F ′ ⊆ F and F ′ ∈ Mod(A ∩ F).
By completeness we have F ′ ∈ Mod(P[F ]Q). But then we
show that F ′ ∈ Mod(P), which is obviously a contradicion.
Indeed, consider some rule a :– a1, . . . , an ∈ P and some
substitution θ s.t. θ(a1), . . . , θ(an) ∈ F ′. If θ(a) = f then
θ(a) ∈ FQ, and the rule θ(a :– a1, . . . , an) is in P[F ]Q,
which would imply θ(a) ∈ F ′ (since F ′ ∈ Mod(P[F ]Q)), a
contradiction. If θ(a) 6= f , then θ(a) ∈ F ′, showing that
F ′ ∈ Mod(P). End proof.

Proof of Theorem 6: We will prove that for any run there
exists some i s.t. ∀j > i,RCi = RCj and QSi = QSj . Define
QS =

⋃
i≥0 QSi. Obviously QS is finite, because we have

only a finite number of relation symbols and a finite number
of constants in the accessible active domain, hence we can
only build finitely many distinct queries (up to variable re-
namings). Hence there exists some j s.t. ∀i > j,QSi = QSj .
Define RC =

⋃
i≥0 RCi: we show now that RC is finite. We

need a definition here. Given a rule r, a0 :– a1, . . . an, we

3In particular we also have R ∪A 6|= FQ, showing that FQ
may replace the rightmost occurrence of F in the definition
of program-completeness.

say that a rule r′ is a postfix rule of r if r′ has the form
θ(a0 :– ak, ak+1, . . . , an), where k = 1, . . . , n and θ is a sub-
stitution. “Postfix” is a transitive relation, i.e., if r′ is a
postfix rule of r and r′′ is a postfix rule of r′, then r′′ is a
postfix rule of r. “Postfix” is also reflexive, i.e., for every
rule r, r is a postfix rule of itself. Obviously, for a given rule
r there are only finitely many postfix rules (up to variable
renamings), because there are only finitely many postfixes
and only finitely many constants. Let QS = { q1, . . . , qm },
let A1, . . . ,Am be the answers obtained in response to the
queries q1, . . . , qm, and let A = Ps∪

⋃
i=1,mAi: obviously, A

is finite. We show by induction on i that every rule in RCi is
a postfix rule of some rule inA. This trivially holds for i = 0,
since RC0 = Ps. Assuming it holds for i, there are two cases.
In a Evaluate step RCi+1 = RCi∪{ r′ }: here the new rule
r′ added is a postfix rule of the rule r ∈ RCi, and we use
the fact that “postfix” is transitive. In a Communicate
step RCi+1 = RCi ∪ Aj , where Aj is the answer to some
query qj ∈ QS. Here the new rules are already in A, and
we use the fact that “postfix” is reflexive. This completes
the induction. It follows that RC is finite, up to variable
renaming, hence there exists some j s.t. ∀i > j,RCi = RCj ,
which completes the proof. End proof.

B. THE DOMAIN NAME SYSTEM
The Domain Name System, or DNS, is the distributed data-
base that maps Internet host names to numerical IP ad-
dresses. This mapping is defined by many different name-
servers, each of which is responsible for part of the mapping.
The mapping is apportioned to nameservers hierarchically,
in a way closely related to the hierarchy of domain names.
For example, the figure below gives a portion of the DNS
namespace. Each label represents a domain, whose name is
the sequence of labels read from right to the root at the left,
separated by dots.

. --+-- com --+-- att --+-- research --+-- www

| | |

+-- edu --+-- mit +-- www +-- raptor

|

+-- cmu

The mapping to IP addresses is maintained by several name-
servers through the use of resource records, including address
(A) records, nameserver (NS) records, and start-of-authority
(SOA) records. The d3log program below shows how re-
source records encode the DNS mapping; we use actual IP
addresses.

site 198.41.0.4 ; # NAMESERVER FOR .
SOA(.,a.root-servers.net.) :- ;
NS(.,a.root-servers.net.) :- ;
A(a.root-servers.net.,198.41.0.4) :- ;

NS(com.,a.gtld-servers.net.) :- ;
A(a.gtld-servers.net.,198.41.3.38) :- ;

site 198.41.3.38 ; # NAMESERVER FOR com.
SOA(com.,a.gtld-servers.net.) :- ;
NS(com.,a.gtld-servers.net.) :- ;
A(a.gtld-servers.net.,198.41.3.38) :- ;

NS(att.com.,kcgw1.att.com.) :- ;
A(kcgw1.att.com.,192.128.133.77) :- ;



NS(.,a.root-servers.net.) :- ;
A(a.root-servers.net.,198.41.0.4) :- ;

site 192.128.133.77 ; # NAMESERVER FOR att.com.
SOA(att.com.,kcgw1.att.com.) :- ;
NS(att.com.,kcgw1.att.com.) :- ;
A(kcgw1.att.com.,192.128.133.77) :- ;

NS(research.att.com.,ns.research.att.com.) :- ;
A(ns.research.att.com.,192.20.225.4) :- ;

NS(.,a.root-servers.net.) :- ;
A(a.root-servers.net.,198.41.0.4) :- ;
A(www.att.com.,192.20.3.54) :- ;

site 192.20.225.4 ; # NAMESERVER FOR research.att.com.
SOA(research.att.com.,ns.research.att.com.) :- ;
NS(research.att.com.,ns.research.att.com.) :- ;
A(ns.research.att.com.,192.20.225.4) :- ;

NS(.,a.root-servers.net.) :- ;
A(a.root-servers.net.,198.41.0.4) :- ;

CNAME(www.research.att.com.,
akpublic.research.att.com.) :- ;

A(akpublic.research.att.com.,192.20.225.10) :- ;
A(raptor.att.com.,135.207.23.32) :- ;

For example, A(a.root-servers.net.,198.41.0.4) is a re-
cord indicating that the IP address of host a.root-servers
.net is 198.41.0.4. NS(.,a.root-servers.net.) indi-
cates that a.root-servers.net is the nameserver for the
part of the domain name mapping starting at the root, ex-
cept for portions (subtrees) delegated to other nameservers.
The record NS(com.,a.gtld-servers.net.) at the name-
server a.root-servers.net shows that the root nameserver
has delegated the com subtree to another nameserver, a.gtld-
servers.net. Each nameserver also maintains a start-of-
authority record; for example, SOA(.,a.root-servers.net.)
is maintained at the root nameserver. (Both NS records
and SOA records are needed in DNS because of replication,
which we do not discuss.)

Accessing the DNS mapping may require querying multiple
nameservers. This is accomplished by a “client” nameserver
that we operate in chaining mode. The client nameserver
has the following program:

Down(x,n,a) :- x$SOA(n2,n3), n !>= n2,
NS(.,n4), A(n4,a4),
Down(a4,n,a) ;

Down(x,n,a) :- x$SOA(n2,n3), n>n2,
x$NS(n4,n5), n>=n4, n4>n2,
x$A(n5,a5),
Down(a5,n,a) ;

Down(x,n,a) :- x$SOA(n2,n3), n>=n2, x$A(n,a) ;

Down(x,n,a) :- x$SOA(n2,n3), n>=n2, x$CNAME(n,n4),
x$A(n4,a) ;

DNS(n,a) :- Down(198.41.0.4,n,a) ;

Queries on the relation DNS can be used to get the address
of a host. For example, DNS(www.att.com.,a) will get the
address of AT&T’s web server.

DNS is defined in terms of a helper relation: Down(x,n,a)

holds if the nameserver at IP address x says that a is the
address of host n. DNS invokes Down with a particular name-
server address, in this case, the address of the root name-
server. Note that Down is not a safe rule. However, when
magic set rewriting is applied to the program, we obtain a
safe set of rules that can be executed bottom-up.

The first Down rule says that if the nameserver x is not an
authority for the name that we are looking up, we should
find the root nameserver (which every nameserver knows),
find its address, and consult the root nameserver.

The second rule says that if x is an authority for the name
we are looking up, but it has delegated responsibility for the
name to another nameserver, we should look up the address
of that nameserver and see what it says.

The third rule says that if x has the address of n, it can just
be returned.

The fourth rule says that if x is an alias, we should look up
its canonical name (CNAME) and find its address.

A search for the address of a host name would then start
at the root and proceed down the hierarchy of nameservers,
which loosely corresponds to the hierarchy of domain names.

This is not the only way to encode DNS in our language.
For example, instead of using the recursive program Down,
we could put the following rules at each nameserver:

DNS(n,a) :- SOA(n2,a2), n !>= n2,
NS(.,n3), A(n3,a3),
a3$DNS(n,a) ;

DNS(n,a) :- SOA(n2,a2), n>n2,
NS(n3,n4), n>n3,
A(n4,a3), a3$DNS(n,a) ;

DNS(n,a) :- A(n,a) ;
DNS(n,a) :- CNAME(n,n2), A(n2,a) ;

The idea is that instead of querying nameservers for A, NS,
and SOA records, the client nameserver will ask each name-
server x about its DNS relation x$DNS. Then each name-
server will consult its own A, NS, and SOA records, and
return a DNS fact, or refer the client to another nameserver,
or, if in chaining mode, contact other nameservers itself.
This is the strategy described in Section 3.


