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Abstract
This paper describes an emulation of a distributed access
control system proposed for use in the GENI network
testbed. We use our trust management system, CERT-
DIST, to realize the system policy, and measure its perfor-
mance by mapping PlanetLab’s centralized access control
scheme to GENI’s distributed scheme and then replaying
logs of PlanetLab access control activity. Our log analy-
sis indicates that any such system must be resilient to both
misconfigurations and attacks, and our emulation results
show the effect of caching schemes and certificate expira-
tion intervals in reducing load on servers and improving
response time.

1 Introduction
Internet-scale distributed systems, like PlanetLab [8] and
the planned GENI [3] platform, provide infrastructure for
distributed applications to share computational, network,
and storage resources. Nodes in such distributed systems
publish security policies in the form of cryptographically
signed certificates. Before an application can access sys-
tem resources on behalf of a particular user, the neces-
sary certificates must be collected and security policies
checked.

Distributed system platforms may provide a trust man-
agement service that collects and checks certificates on
behalf of an application. Such a service may be imple-
mented by a centralized authority that proactively col-
lects all certificates for all system resource owners and
answers all certificate requests. PlanetLab, for example,
has provided a centralized trust service in PlanetLab Cen-
tral (PLC) since its inception. We observe, however, that
Internet-scale federated systems will be composed of au-
tonomous administrative domains, each of which man-
ages its own users and security policies and may be re-
luctant to share sensitive data with any centralized au-
thority, trusted or not. PlanetLab is currently evolving
into a federation of independent administrative domains
each in control of its own security policies, and GENI
is designed similarly. To better support their client ap-

plications, such systems should provide distributed trust
management, where participants cooperate to collect and
check security policies.

This paper describes an emulation of a distributed ac-
cess control system being developed for GENI. The secu-
rity policies are written in a declarative framework called
CERTDIST, which uses certificates to distribute policies
within the system using mechanisms including a dis-
tributed hash table for load balancing and efficiency. One
distinguishing characteristic of our work is our methodol-
ogy for evaluating our system. To examine how the sys-
tem functions under a realistic work load, we acquired one
month of PlanetLab logs containing users’ access control
requests from over 400 sites across the world. We trans-
late these requests into the operation request format cur-
rently being prototyped for GENI and then re-distribute
policies and requests to appropriate geographic locations
across PlanetLab. CERTDIST is deployed at about 550
PlanetLab nodes, permitting us to emulate evaluation of
security policies as they might transpire in GENI.

GENI is representative of the federated distributed sys-
tems that motivate our research, whereas PlanetLab pro-
vides us with experimental data and is our experimental
platform. We review both and present an example of how
security policies are evaluated in Section 2. Section 3
describes the logs that we collected and use in our ex-
periments. In addition to supporting our own systems
research, we expect that these logs (http://www.planet-
lab.org) and our experimental platform will be of value to
others studying distributed access control. Section 4 de-
scribes the CERTDIST architecture. The system behavior
and the experiment results from our system’s certificate
caching constructs are explained in Section 5.

2 GENI’s security architecture

GENI’s security architecture [4] is an evolving proposal,
and there have been several competing designs; ours is
based on the “geniwrapper” implementation that provides
a GENI-like interface to PlanetLab.

In geniwrapper, an experiment runs in a slice: a collec-

1



Figure 1: GENI’s federated structure.

tion of distributed resources belonging to a set of compo-
nents such as edge computers, customizable routers, etc.
An experiment is run by a group of researchers, called the
users of the slice. An authority is an administrative do-
main that manages a set of components, users, and author-
ities, and handles resource allocation by granting slices to
its users and other users. Each authority has a registry that
stores its policy information.

Figure 1 depicts a GENI federation. Each node in
the figure has a human-readable name (HRN). The edges
in the figure imply a trust relationship; for example,
geni.us.pr is under the authoritative purview of geni.us,
which can vouch for the behavior of geni.us.pr. The name
structure thus reflects the administrative structure of the
federation, which in general can be a forest. For our em-
ulation we have used a single global root, geni, so our
federation has a tree structure where interior nodes are
authorities (servers with associated registries), and leaves
are components and users.

Every GENI object (i.e., an authority, slice, user, com-
ponent, service, etc.) has a global id (GID) consisting of a
unique identifier and a public key. In Figure 1, the GIDs
of objects are in parentheses. An object has a private key
corresponding to its GID, which can be used to sign cer-
tificates. We use the notation “A says ” for a certifi-
cate signed by (the private key of) object A.

Authorization in GENI When a GENI object wants to
perform an operation, it must supply certificates that show
that it is authorized to do so. Exactly what certificates
are required depends on the operation, its parameters, the

1. G says U is us

2. U says P is pr

3. P says B is bob

4. G says U can Register on geni.us

5. U says T can Register on geni.us.tx

6. T says B can GetSliceCred for geni.us.tx.slice

7. H says B can CreateSlice on geni.eu.inria.host

Figure 2: Certificates.

invoker, etc.; and whether or not a specific certificate will
be issued depends on the policy of the signer.

For example, if a user geni.us.pr.bob of a slice
geni.us.tx.slice wants to run an experiment on
geni.eu.inria.host, he must first perform the GetTicket()
operation at geni.eu.inria.host. If approved, he will
receive in return a certificate that represents a set of
resources that he can claim when the experiment is
launched.

Figure 2 gives the certificates that he must supply when
invoking GetTicket(). The GIDs G, U , P , and T are those
of the objects geni, geni.us, geni.us.pr, and geni.us.tx (as
in Figure 1), and B is the GID of user geni.us.pr.bob.

Every GENI object starts out knowing the root’s name
(geni) and GID (G), while other GIDs are discovered by
chains of certificates starting with one signed by G (i.e.,
signed by the private key corresponding to the public key
of G). GENI uses linked local namespaces [1], so certifi-
cate 1 implies that U has name geni.us, certificates 1–2
imply P has name geni.us.pr, and 1–3 imply B has name
geni.us.pr.bob. Certificates giving an object’s name are
required by most operations, for accounting purposes.

Certificates 4–6 say that B is the GID of a user of a
slice geni.us.tx.slice. Certificate 6 alone is insufficient for
this purpose: Certificates 4–5 are necessary to prove that
T has the authority to issue such a certificate [4]. The
result of GetTicket() is certificate 7, which states that B
can allocate resources on geni.eu.inria.host. The user can
later call RedeemTicket() on geni.eu.inria.host, which re-
quires certificates 1–3 and 7 to launch the experiment. The
key observation is that a GENI operation call may require
gathering several certificates each signed by geographi-
cally and organizationally distinct authorities.

3 Access control in PlanetLab
To better understand how access control might perform
in GENI, we have logged the access control behavior of
PlanetLab, and we have created a projection of how the
same behavior would have played out if GENI access con-
trol were used instead. This section describes the logging.

2



 1

 10

 100

 1000

 10000

 100000

Jul Aug Sep Oct Nov Dec

P
L
C

 O
p
e
ra

ti
o
n
s
 p

e
r 

d
a
y

Approved
Rejected

Figure 3: PLC operations per day, 26 June–27 Dec 2008.
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Figure 4: SSH attempts per day, 8 March–7 April 2009.

PlanetLab makes access control decisions at two
places: first, at PlanetLab Central (PLC), which main-
tains records for users, nodes, and slices; and second, at
individual nodes, where users run experiments. We have
gathered logs of the authorization activity at both places.

Figure 3 shows the access control decisions made at
PLC over a six-month period in 2008. One curve shows
the number of approved operations per day, while another
shows the number of rejected operations per day. The
spike in approved operations in December is due to the
start of some new experiments. The jump from zero re-
jected operations in July corresponds to a major upgrade
in the PLC software, which improved logging of errors;
the PLC administrators think that the number of rejected
operations did not in fact increase due to the software up-
grade. The large spike in rejected operations in October
appears due to a single misconfigured experiment.

Figure 4 shows the number of SSH login attempts per
day over a one-month period in 2009 to 573 nodes in Plan-
etLab. One curve shows successful logins, while another
shows unsuccessful logins which we believe are due to
brute-force SSH attacks. The successful logins account
for 50% of the attempts, and the attacks account for 49%.
We also see a small number of failed logins for legitimate
slices; these typically occur because of a delay in propa-
gating slice authorization from PLC to nodes. The failed
logins are not displayed on the graph, since they account
for less than 1% of the total SSH attempts.

We can make some general observations, which we ex-
pect are pertinent to any access control system for a net-
work testbed similar to PlanetLab. First, the PLC opera-
tions correspond to administrative actions such as adding
new users and slices, and they occur much less often than
actual accesses (SSH logins). Second, misconfigurations
and misuse of the PLC API are common, occurring at
roughly the same magnitude as correct uses. Third, brute-
force SSH attacks on PlanetLab nodes are also common,
occurring at the same frequency as legitimate logins.

4 CERTDIST system overview

CERTDIST is a system for specifying security policies and
retrieving and distributing certificates. Like other trust
management systems [5, 10], CERTDIST is general (not
limited to GENI access control) because policies are writ-
ten in an application-independent, declarative language.
CERTDIST policies are readable and scalable because they
do not specify details of certificate signing and distribu-
tion; those details are handled automatically by a peer
network incorporating both authoritative servers and dis-
tributed caching using a DHT.

We apply CERTDIST to our GENI example (cf. Fig-
ure 1) as follows. Each GENI object runs a CERTDIST
daemon that exposes the object’s policy to others, and
caches and retrieves certificates from other CERTDIST
daemons as needed. Since our experiments have no user
machines, user objects are handled by component dae-
mons, keeping policies isolated for each object.

Each daemon loads both a system-wide policy that
specifies the set of certificates required to perform each
GENI operation, and also a policy specific to the object.
The local policy includes the cryptographic key pair of
the object and the access control information saying who
can use local resources or invoke specific operations. All
policies are specified with a declarative language, Pro-
log, which simplifies policies, increasing the likelihood
that the policy writer produces both complete and correct
specifications. A GENI policy containing both system-
wide and local rules is about 150 lines. CERTDIST uses
the SWI-Prolog interpreter [9], which provides a foreign
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language interface that allows us to extend the interpreter
with functions for cryptographic signing and issuing net-
work requests.

When a GENI object wants to perform an operation,
its daemon consults the local policy to determine what
certificates are necessary. If the certificates are found
in the local cache they can be returned immediately;
otherwise the daemon requests them from remote dae-
mons. When a daemon receives a certificate request, it
decides whether to grant or reject the request by exam-
ining its local policy and any certificates provided by the
caller. For example, certificates 1–6 of Figure 2 will be
gathered by geni.us.pr.bob’s daemon in order to perform
the GetTicket() operation, and they can be submitted to
geni.eu.inria.host, which will examine its local policy and
the certificates before granting certificate 7.

In CERTDIST, a daemon can obtain a missing certifi-
cate in two ways. The first way is to make an authori-
tative query to the certificate’s signer. For example, if the
daemon is missing a certificate signed by geni.us.pr, it can
request it directly from geni.us.pr’s CERTDIST daemon. In
order to do that, however, it must obtain geni.us.pr’s IP ad-
dress, and that is determined by a GENI policy (the GENI
policy includes secure name lookup, superseding DNS).
An authoritative query therefore requires the daemon to
obtain a certificate chain to find the server’s address.

The second way to obtain a missing certificate is
through a DHT query. CERTDIST uses a Kademlia dis-
tributed hash table [6] to cache and distribute certificates.
Each CERTDIST daemon has a Kademlia key/id that is the
cryptographic hash of the object’s public key and serves as
its routing address. Certificates are stored in the network
under the key consisting of the hash of the query that re-
trieved them. For example, if a daemon makes an author-
itative query Q and receives a certificate C in return, then
it stores C in the network under hash(Q). Then, when
another daemon needs to make query Q, it can look for
the answer in the peer network. As usual with Kadem-
lia, whenever a daemon successfully retrieves C from a
peer, it tries to store it at a closer peer, to speed subse-
quent lookups.

Certificates are only stored in the DHT on demand. If
a daemon does not find the certificate in the DHT after a
certain timeout, it abandons the DHT query and falls back
to an authoritative query. When it receives the certificate
from the authoritative server, the daemon stores it in the
DHT for future use. Certificates contain expiration times,
and peers delete certificates as they expire.

5 Preliminary evaluation

We present preliminary experiments that measure the
cost of authoritative queries and the effects of certificate

caching and expiration times on system load and response
time. Our experiments are executed on 550 PlanetLab
nodes and are driven by emulated GENI events derived
from the PlanetLab event logs described in Section 3. We
first describe how the emulation events are derived from
the PlanetLab logs and then present the experiments.

A GENI federation and its corresponding HRNs will re-
flect a complex geographic and administrative structure.
To emulate a deeply nested structure from PlanetLab’s
two-level structure, we essentially reverse the domain
names of PlanetLab hosts and root them in the appropriate
federation (e.g., host.inria.fr becomes geni.eu.inria.host).
We map user and slice names in a similar way (e.g.,
tx slice becomes geni.us.tx.slice).

To drive the emulation, we map each access-control
event in the PLC API logs and SSH logs to one or more
GENI operations. Figure 5 contains an example SSH log
event from the log on host.inria.fr and its corresponding
representation as a fully-specified GetTicket operation.
The SSH event includes a slice name and origin IP ad-
dress but does not give the user of the slice (in Planet-
Lab each slice corresponds to an SSH account, and every
user of the slice logs into the same SSH account). There-
fore, for our emulation we randomly pick a user of the
slice to perform all of the GENI operations of the slice
originating at a given IP address. The emulated user’s
public key is obtained from PLC. The destination and
slice name are derived from the log entry, and for the
origin, we choose a machine near the emulated user in
the HRN structure. HRNs are derived using the mapping
rules described above. During emulation, evaluation of
this GetTicket operation will require gathering the certifi-
cates in Figure 2.

Mapping PLC-API events to GENI operations is
straightforward, because they contain the user, origin, and
detailed operation parameters. The destination of each
PLC-API event is PLC itself, so we select a destination
authority from one of the 550 available PlanetLab nodes
using heuristics that depend on the invoking user and op-
eration type and parameters. For example, an event to up-
date host.tx.edu’s records at PLC would likely be mapped
to an operation that updates geni.us.tx.host’s records at the
geni.us.tx authority.

Before emulation, we distribute each GENI operation
to the PlanetLab node that corresponds to the operation’s
origin. Ideally, each operation would be emulated at the
true origin, but individual users’ machines are not pub-
licly available in PlanetLab. Therefore, we select an ori-
gin node from the nodes within the user’s authority, or, if
necessary, from the parent authority. For example, if no
nodes of geni.us.pr were available, we would select one
from the geni.us authority. After distributing operations,
we launch CERTDIST daemons at every invocation loca-
tion and begin replay of the local operations.
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PL (SSH) event
Slice: tx slice

Origin: 150.135.68.171
Destination: host.inria.fr
Timestamp: Mar 11 02:39:24

GENI event
Operation: GetTicket(geni.us.tx.slice)

User: geni.us.pr.bob
User’s public key: (in PEM format)

Origin: geni.us.pr.host
Destination: geni.eu.inria.host
Timestamp: 2008–11–03 02:39:24

Figure 5: A PL event and corresponding GENI event

5.1 Expirations and flash crowds
We use signed certificates for efficiency and scalabil-
ity. Certificate reuse eliminates repeated signings, which
can cost as much as seven times more than returning a
signed certificate. Signed certificates can be cached and
reused, until their expiration, without the involvement of
their authoritative signer. However, the use of expiration
times can perversely increase the load on the authoritative
server; if many parties are relying on a certificate, they
will all want the server to refresh the certificate at its expi-
ration. This can create a periodic flash crowd at the server.

There are several ways we might address flash crowds
(e.g., by using both time-to-live fields and expiration
times [7]). So far, however, our experiments show that our
DHT-based distributed caching scheme sufficiently miti-
gates the problem. The results of one such experiment are
given in Figure 6, which shows the query rate at the most
heavily loaded server, the U.S. authority. In the figure, the
solid curve corresponds to running the experiment with
the DHT disabled, and the dotted curve corresponds to an
enabled DHT. For this experiment we used a certificate
lifetime of 15 minutes, and the figure shows a rough peak
in queries every 15 minutes. The DHT is able to reduce
the authoritative query rate by more than 50%.

5.2 Obtaining missing certificates
Section 4 described how a CERTDIST daemon obtains a
missing certificate. The process is complicated: perform-
ing an authoritative query may require an address lookup
which itself may need missing certificates, and a DHT
query involves peer routing and may fall back to an au-
thoritative query when the DHT does not have the certifi-
cate. We have experimented with several variables that
affect the overall cost of obtaining a missing certificate:

Timeout In our query strategy, a daemon first searches
the peer network for a missing certificate, and, if that
fails, it conducts an authoritative query. Therefore,
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Figure 6: Queries to U.S. authority (15-min. expiration)

when the certificate is not in the DHT, a DHT query
performs strictly worse than a simple authoritative
query. This means that the timeout we select for giv-
ing up the peer search is critical for performance. We
are currently using 0.7 seconds as our timeout value,
as our experiments show that this is sufficient to cap-
ture 90% of successful peer searches. Timeout on
authoritative queries is important for usability and
server load. We use 5 seconds for the authoritative
query timeout.

Certificate popularity Storing unpopular certificates in
the peer network causes load on the peer network but
does not reduce the load on authoritative servers or
improve response time. In our experiments we are
currently only storing certificates signed by the root,
U.S., and Europe authorities in the peer network. We
plan to automate this selection in future work.

Load The DHT has the most benefit when the system is
under high load.

Figure 7 gives the results of several runs of our experi-
ments that examine the effects of load under different con-
figurations. We conducted emulations at the actual load
seen on PlanetLab and at ten times that load, and we con-
ducted emulations using the DHT as described and with
the DHT disabled (all queries were authoritative queries).

The graph shows the cumulative time to retrieve miss-
ing certificates, including successful and failed attempts.
For example, 50% of missing certificates are retrieved in
one second when the system is configured for authorita-
tive queries only at normal load (AUTH 1× SUCC). The
DHT does not improve the retrieval times under normal
load, although we observed earlier that, as expected, it re-
duces load on the authoritative server. Deployment prob-
lems, unexpected node failures, etc are challenging with
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550 machines, and constitute the major reason of 10%
failure under normal load. These will be solved by per-site
dedicated management teams in a real GENI deployment.
In the lower part of the graph, the failed attempts show a
sharp jump at five seconds, which is the timeout for au-
thoritative queries when CERTDIST daemons give up on
obtaining a missing certificate. Experimenting with 10×
load allows us to observe system behavior with a larger
user base. Because the PlanetLab nodes are not dedicated
servers, under high load many queries time out; however,
the DHT improves the success rate by balancing the load.
Higher timeouts could improve the success rate but would
mean longer response times, less QoS for the user. Higher
dedicated resources from PlanetLab is required for better
QoS for the user in 10x case, and we see DHT can be a
way to achieve same QoS with less dedicated resources.
Lastly, we expect running user activity on PlanetLab ma-
chines rather than user machines will have little effect
on query times since there is similar network latency in
queries and little node overhead to affect response times.

6 Discussion
A major focus of our future work will be to explore
caching and retrieval strategies for certificates. The CERT-
DIST implementation currently retrieves a policy’s miss-
ing certificates sequentially. We plan to study the impact
of parallel retrieval of independent certificates on total
policy evaluation time. For example, the certificates 1–6
of Figure 2 consist of two independent certificate chains,
1–3 and 4–6, which could be retrieved in parallel.

Currently, CERTDIST makes static, system-wide deci-
sions with respect to cache parameters, such as timeout,
certificate popularity, and maximum server load. Dy-

namic optimization of cache parameters to minimize re-
sponse time is another area of future work. We also plan to
investigate whether cache implementations like one-hop-
DHTs and CDNs can improve certificate retrieval time.

Effectiveness of certificate caching in other systems
like GENI is an important area for future work. The
request patterns for certificates depend on operation re-
quest patterns, certificate expiration values, and delega-
tion structure, all of which impact certificate caching.
These interactions are the subject of further evaluation.

Evaluating a policy may require contacting many prin-
cipals in different domains, so the reliability and effi-
ciency of a domain can affect larger portions in a dis-
tributed trust system. This is a real concern since in Plan-
etLab it is not unusual for a significant fraction of nodes
to be offline. Our CERTDIST implementation will let us
study how uptime, denial-of-service attacks, and varia-
tions in the security policies affect reliability.

Finally, we have found PlanetLab’s access control logs
invaluable for studying attacks, misconfigurations, tem-
poral user behavior across different domains, query dis-
tribution, and so on. We plan to make the PlanetLab logs
accessible to others to foster further research.
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