
Authenticated System Calls

Mohan Rajagopalan
Department of Computer Science

The University of Arizona
Tucson, AZ 85721

Email: mohan@cs.arizona.edu

Matti Hiltunen Trevor Jim Richard Schlichting
AT&T Labs-Research

180 Park Avenue
Florham Park, NJ 07932

Email: {hiltunen,trevor,rick}@research.att.com

Abstract

System call monitoring is a technique for detecting and
controlling compromised applications by checking at run-
time that each system call conforms to a policy that specifies
the program’s normal behavior. Here, a new approach to
system call monitoring based on authenticated system calls
is introduced. An authenticated system call is a system call
augmented with extra arguments that specify the policy for
that call and a cryptographic message authentication code
(MAC) that guarantees the integrity of the policy and the
system call arguments. This extra information is used by the
kernel to verify the system call. The version of the applica-
tion in which regular system calls have been replaced by au-
thenticated calls is generated automatically by an installer
program that reads the application binary, uses static anal-
ysis to generate policies, and then rewrites the binary with
the authenticated calls. This paper presents the approach,
describes a prototype implementation based on Linux and
the PLTO binary rewriting system, and gives experimental
results suggesting that the approach is effective in protect-
ing against compromised applications at modest cost.

Keywords: Intrusion tolerance, operating systems, security
policy, sandboxing, compiler techniques

1. Introduction

System call monitoring is a widely used technique for
detecting compromised applications and for sandboxing ap-
plications to minimize the damage they can cause if they
become compromised [2, 4, 5, 8, 9, 11, 14, 15, 18, 19, 20,
22, 24]. The intuition is that a compromised application can
only cause real damage by exploiting system calls, making
this interface the ideal point to detect and control attacks.
The approach is based on having a model or policy of an
application’s normal system call behavior and then halting
execution when an application deviates from this normal
behavior. Policy checking and enforcement are security-
critical, and hence, are performed entirely in the kernel or

in the kernel in conjunction with a protected user-space pol-
icy daemon.

This paper introduces authenticated system calls, a new
technique for monitoring and enforcing system call policies.
An authenticated system call is a system call with additional
arguments that specify a policy that the system call should
satisfy, and a message authentication code (MAC) that guar-
antees the integrity of the policy and other arguments to the
system call. The policy and MAC are part of the untrusted
application, but the MAC is computed with a cryptographic
key that is available only to the kernel. At each invocation
of an authenticated system call, the kernel uses the key to
recompute the MAC, and only allows the call to proceed if
this matches the MAC passed in by the application. Since
the application never has access to the key, it cannot suc-
cessfully create a new authenticated system call or tamper
with an existing authenticated system call. This approach of
dividing the functionality between the application and the
kernel is novel, and contrasts with other approaches that ei-
ther rely on user-space policy daemons [4, 5, 8, 11, 18, 22],
or require large-scale changes to the kernel [2, 14, 19, 20].
In comparison with our approach, the former can have un-
acceptably high execution costs unless frequently-used sys-
tem calls are special-cased for enforcement in the kernel,
while the latter results in a more complex kernel and the
associated increase in execution overhead.

The second key element of our approach is the automatic
transformation of the application to replace each system call
with the equivalent authenticated call. This is done by a
trusted installer program that reads the application binary,
uses static analysis to determine the appropriate policy for
each call, and then rewrites the binary with the authenti-
cated calls. The use of static analysis has significant ad-
vantages over methods based on hand-written policies or
policies obtained by training, i.e., recording the system call
behavior of the application over a period of time. In partic-
ular, it is completely automatic, produces policies quickly,
and it does not miss system calls invoked by rarely-used
parts of the application. We demonstrate these advantages



empirically by comparing our policies with those published
elsewhere for the well-known Systrace system call monitor-
ing system [15].

The primary goals of this paper are first, to describe the
details of authenticated system calls, and second, to give ex-
perimental results from a prototype implementation of the
approach based on Linux and the PLTO binary rewriting
system [17]. In addition, we describe extensions that can
be used to make policies more expressive. These include
support for state-dependent policies and capability tracking,
where information on linkages between argument values in
different system calls is included in the policy.

2. Basic Approach

Overview. As noted above, two steps are needed to pro-
tect systems using our basic approach: transforming pro-
grams to replace system calls with authenticated system
calls, and runtime checking by the kernel to ensure that
each system call matches its policy. The first step, instal-
lation, is illustrated in figure 1. The binary of a program
is read by a trusted installer program, which first generates
the policy that captures the allowed behavior for each sys-
tem call using static analysis, and then rewrites the binary
so that each system call includes the policy and a crypto-
graphic MAC that protects the policy. The key for the MAC
is specified during the installation process. The second step,
syscall checking, is illustrated in figure 2. At runtime, each
system call is intercepted by the kernel and, after verifying
the MAC using the same key as used during installation, the
behavior of the call is verified against the policy. If the be-
havior matches the policy, the call is allowed; otherwise, the
call is rejected and the executing process terminated.

program
protected

Trusted Installer

policy

rewritingpolicy
generation

key

program
original

Figure 1. Program installation

Here, we elaborate on the details of policies, installa-
tion, and syscall checking for this basic approach. This
description matches our prototype implementation, which
is used for the experimental results in section 3. The
most important limitations of this prototype are that it cur-
rently requires relocatable binaries and can handle only
statically-linked executables; ways to address both of these
issues are discussed further below and in section 4, respec-
tively. Techniques for improving the expressiveness of the
automatically-generated policies are also presented in sec-
tion 4.

user−space

kernel

System Call Handers

System Call Entry

Regular

program
Protected

program
Protected

program

Verification
MAC

Figure 2. Syscall checking

Policies. A policy can be defined as the set of verifiable
properties of a system call request. Our current prototype
enforces system call policies of the following form:

Permit open from location 0x806c462
Parameter 0 equals "/dev/console"
Parameter 1 equals 5

This policy says that an application can invoke the open sys-
tem call from the call site at memory address 0x806c462,
provided that the first parameter is a pointer to the string
“/dev/console,” and the second parameter is the constant 5.
In general, our policies can specify the system call number,
the call site, constant parameter values (e.g., integer con-
stants), and constant parameter addresses in the read-only
text segment (e.g., strings). If a policy does not give a value
for a parameter, then the parameter is unconstrained and any
value is allowed.

These policies are reasonably expressive: most of the
published system call policies for other system call monitor-
ing systems such as Systrace constrain only the system call
number, and constant parameter values and addresses. In
section 4, we extend policies to include, for example, poli-
cies derived from call graphs, policies that allow argument
values to match patterns, and capability tracking policies for
arguments such as file handles.

Installation. The trusted installer program is used by a
security administrator to generate the policy for an appli-
cation, and to produce an executable binary that contains
authenticated system calls. The installer reads in an appli-
cation binary and disassembles it into an intermediate rep-
resentation. Then, the installer determines system call argu-
ments (using standard compiler techniques such as constant
propagation [1]) resulting in a policy for each system call
consisting of the system call number, call site, and some ar-
gument values. We call such a policy the system call’s au-
thenticated system call (ASC) policy, while the combination
of ASC policies for all system calls in an application make



up the application’s ASC policy. Once an application’s pol-
icy has been generated in this way, it can be printed out for
the administrator to review, or the installer can proceed di-
rectly to the next step, rewriting.

In the rewriting step, the installer transforms the binary
by replacing the original system calls with authenticated
system calls. An authenticated system call consists of the
original system call extended by two arguments: a policy
descriptor and the MAC. The policy descriptor is a sin-
gle 32-bit integer value that describes what parts of the sys-
tem call are protected by the MAC. In particular, for each
original argument of the system call, it encodes whether the
argument is unconstrained or constrained to be a constant
value or address as defined above.

The installer computes the MAC over the encoded pol-
icy, i.e., a byte string that is a self-contained representation
of the policy. It builds this encoded policy by concatenating
the system call number, the address of the call site, the pol-
icy descriptor, and the argument values for those arguments
that are constrained. For example, for a policy

Permit fcntl from location 0x806c57b
Parameter 1 equals value 2

the installer computes the byte string

005c 00000011 0806c57b 0000002

Here 005c is the system call number of fcntl, 00000011 is
the 32-bit number that says that the call site and parame-
ter 1 should be constrained and parameter 0 should be un-
constrained, 0806c5b7 is the call site, and 00000002 is the
value for parameter 1. The installer computes a MAC over
this byte string using a key provided by the security admin-
istrator. The prototype uses the AES-CBC-OMAC message
authentication code, which produces a 128-bit code [10].
The installer adds the MAC to the data segment of the bi-
nary, and adds a pointer to the MAC as an argument to the
system call. The result is an authenticated system call, with
two more arguments than the original system call.

The installer completes once it has processed every sys-
tem call in the program. The system as a whole is protected
once all binaries that run in user space have been trans-
formed to use authenticated system calls by the installer.

Syscall checking. Enforcement of an application’s ASC
policy is done by the kernel at runtime. When an authenti-
cated system call occurs, the kernel receives arguments that
include the system call number, the arguments to the orig-
inal unmodified call, the policy descriptor, and the MAC.
Furthermore, it can determine the call site based on the re-
turn address of the kernel interrupt handler. Using this infor-
mation, the kernel performs the following computation to
validate that the actual system call complies with the spec-
ified policy. It first constructs an encoding of the policy by

concatenating the system call number, the call site, the pol-
icy descriptor, and those argument values that are specified
in the policy descriptor. The kernel then computes a MAC
over this encoding using the same key used during installa-
tion, and checks that the result matches the MAC passed in
as an argument. If the MACs match, the kernel carries out
the system call; otherwise, it terminates the process, logs
the system call, and alerts the administrator. Unauthenti-
cated calls are also blocked.

Syscall checking is designed so that MAC matching fails
if an application has been compromised. Note that the argu-
ments to the authenticated system call are under the control
of the application, which means that it might have tampered
with any of them, including the policy descriptor and MAC,
or it might have even tried to construct a new authenticated
system call somewhere in the heap. However, any change to
the system call number, call site, policy descriptor, or val-
ues of arguments constrained by the policy would result in
a change to the encoded policy that is constructed by the
kernel. This in turn would change the MAC needed to pass
the kernel test. Our cryptographic assumption is that it is in-
feasible for the adversary to construct a matching MAC for
its changes without access to the key, hence, any attempt
by the application to change the system call to violate the
policy will fail.

Prototype implementation. Our prototype implemen-
tation of the trusted installer is based on the PLTO binary
rewriting system that reads a binary executable, constructs
an intermediate representation of the program and its con-
trol flow, performs optimization passes on the intermediate
representation, and finally rewrites the binary for the op-
timized program [17]. The installer functionality is added
to PLTO as optimization passes that determine system call
policies and then replace each system call in the program
with an authenticated system call. The installer runs on
Linux, PLTO’s native platform. The policy generation por-
tion of the installer has also been ported to OpenBSD to
compare policies generated on the two platforms; this is
used for the experimental evaluation in the next section.

PLTO is an optimization tool, and, as a result, it requires
relocatable binaries (i.e., binaries in which the locations of
addresses are marked), so that addresses can be adjusted as
code transformations move data and code locations. Our in-
staller currently inherits this requirement, although it should
be straightforward to generate policies for binaries without
relocation information. One impact of this restriction is that
the binaries we test in the next section had to be compiled
from source, since binaries shipped with standard Linux and
Unix distributions do not contain relocation information.

Syscall checking has been implemented in Linux by
adding a little over 200 lines of code to the kernel’s soft-
ware trap handler, and including a cryptographic library of



about 3000 lines of code for MAC functionality [7]. The
software trap handler is responsible for identifying the sys-
tem call number and arguments, invoking the appropriate
system call handler, and returning the result to the calling
application. We modified the handler to call a routine that
uses the MAC to verify that the system call satisfies the re-
quired policy. We have not yet implemented syscall check-
ing in OpenBSD.

To evaluate the security provided by authenticated sys-
tem calls against different forms of code injection attacks,
we devised a set of synthetic attack experiments. Exploits
based on techniques such as code injection and parameter
hijacking were used against a synthetic program that con-
tain a number of exploitable vulnerabilities, such as over-
flowable buffers. The attack code was able to cause the
program to spawn a root shell on the unprotected system,
while the attacks failed against the version using authenti-
cated calls.

3. Experimental Evaluation

This section gives the results of an experimental evalua-
tion of authenticated system calls as realized in our proto-
type implementation. We start by describing the ASC poli-
cies generated by the installer, and comparing them with
some of those available for Systrace. We then present ex-
perimental results that quantify the performance impact of
authenticated system calls compared with unprotected calls.

Policies. An ideal policy would permit the system call be-
haviors needed for normal operation and no others. If the
policy permits system calls not used by the uncompromised
application (unneeded calls), it leaves open the possibility
that such calls could be exploited by an attacker. If the pol-
icy omits some system calls actually used by the application
(needed calls), it raises the possibility of a false alarm that
causes the application to be terminated unnecessarily. False
alarms are a significant administrative headache and barrier
to use.

We generate our ASC policies through a conservative
static analysis, so our polices include all needed calls, and
thus avoid false alarms. In contrast, policies generated by
hand or by training may miss needed system calls, for ex-
ample, because they occur only in parts of the program that
are rarely executed.

ASC policies might include unneeded system calls, be-
cause no static analysis is able to identify the exact set of
needed calls for every program. Note, however, that un-
needed calls might also appear in policies produced by hand
or by training. Hand produced policies can include mis-
takes, for example. System calls identified through training
are never unneeded, by definition, but there are still oppor-
tunities for errors; for example, policies might be obtained

by training on one version of an application and operating
system, and used on another. In general, policies generated
by training are not portable between operating systems, or
even between different versions of the same operating sys-
tem, and they may need to be adjusted even when only li-
braries are updated.

In order to gather some empirical evidence regarding
false alarms, unneeded system calls, and operating sys-
tem effects, we ported our policy generator from Linux
to OpenBSD. OpenBSD is a useful test case because it
supports a system call monitor, Systrace, in its default
build, and researchers have published Systrace policies for
OpenBSD applications. The Systrace policies are generated
through training along with hand edits.

ASC policy ASC policy Systrace policy
Program for Linux for OpenBSD for OpenBSD
bison 31 31 24
calc 54 51 24
screen 67 63 55

Table 1. Number of system calls in policies

Table 1 compares the number of distinct system calls per-
mitted in both ASC and Systrace policies for several com-
mon Unix programs: bison, the GNU Project parser gen-
erator; calc, an arbitrary-precision calculator program; and
screen, a screen manager with terminal emulation. The first
column gives the numbers for the ASC policy generated
on Linux, the second column the ASC policy generated on
OpenBSD, and the third column gives the numbers for Sys-
trace policies published by the Project Hairy Eyeball web
site [6]. This rough comparison illustrates two things:

• There are significant differences in the system calls
needed for the same application running on different
operating systems; this implies that policies for one
operating system cannot simply be used on another.

• ASC policies identify system calls that are not present
in Systrace policies.

Table 2 examines the policies for bison in more detail.
The table shows system calls that are permitted by the ASC
policy generated on OpenBSD but not by the Systrace pol-
icy, and vice versa. Note that the ASC policy includes many
system calls that are not present in the Systrace policy. We
believe that most of these calls are in fact needed, and we
have verified some of them by hand using a system call
tracer on actual runs of applications. This means that the
Systrace policy can cause false alarms.

Conversely, there are a few system calls permitted by the
Systrace policies that are not allowed in the ASC policy.
They break down as follows.



System call ASC Systrace
syscall yes NO

close NO yes
fcntl yes NO

fstatfs yes NO

getdirentries yes NO

getpid yes NO

gettimeofday yes NO

kill yes NO

madvise yes NO

mkdir NO yes (fswrite)
mmap NO yes
nanosleep yes NO

readlink NO yes (fsread)
rmdir NO yes (fswrite)
sendto yes NO

sigaction yes NO

socket yes NO

sysconf yes NO

uname yes NO

unlink NO yes (fswrite)
writev yes NO

Table 2. Comparison of policies for bison

mmap. The mmap system call is implemented on
OpenBSD by invoking syscall, a generic indirect sys-
tem call function. The ASC policy correctly constrains
the arguments of syscall so that only mmap can be
invoked, however. With Systrace, this indirection is
hidden from users since its policy does not explicitly
allow syscall.

close. The call of close is not identified by PLTO due to
an unusual implementation on OpenBSD that PLTO

currently cannot disassemble. However, PLTO always
reports when it cannot completely disassemble a bi-
nary, so that the administrator would always be aware
of such a problem. To date, we have not encountered
similar difficulties on Linux, PLTO’s native platform.

mkdir, readlink, rmdir, unlink. The Systrace system uses
two generic names, fsread and fswrite, to specify sets
of system calls; fsread denotes read-related system
calls and fswrite denotes write-related calls. The fact
that mkdir, etc., are not in the ASC policy indicates
that they are unneeded system calls, but their execu-
tion would be allowed with Systrace since its policy
includes fsread and fswrite.

Next, we examine the degree to which each authenti-
cated system call is protected from alteration by its MAC.
In our current prototype, the system call site and call num-
ber are always protected by the MAC, as are those argu-
ments whose values can be determined by static analysis. It

prog sites calls args o/p auth mv fds
bison 158 31 321 31 90 2 69
calc 275 54 544 78 183 2 109
screen 639 67 1164 133 363 7 297
tar 381 58 750 105 238 3 152

Table 3. Argument coverage

is, of course, impossible to determine all argument values
using such techniques; for example, the value may be read
as a user input, generated as a result of a system call, or
may be unknown because of pointer aliasing. In practice,
however, static analysis can determine enough values to be
useful [22], and it can provide a partial policy template that
can then be extended by the security administrator using dy-
namic profiling and application knowledge.

Table 3 provides the results of generating ASC policies
for four programs: the three from above and tar, the Unix
archiving program. The sites column indicates the number
of separate system call locations in the program, calls in-
dicates the number of different system calls, and args gives
the total number of arguments (not including the system call
number) from all the call sites. The o/p column gives the
number of system call arguments that are output-only ar-
guments, that is, the argument is an address of a structure
where the kernel stores the result of the call. The auth col-
umn lists the number of arguments that could be determined
by the static analysis done by the installer and that could
be authenticated by the basic approach. These results indi-
cated that 30–40% of the arguments can be protected based
on static analysis and the basic approach.

In addition to these arguments, there are many others
that might be protected by using extensions such as those
described in section 4. Table 3 includes statistics for two
of these as well: arguments where the value can be deter-
mined using static analysis but each argument may have two
or more values (mv), and arguments that are file descrip-
tors that were returned previously from system calls such as
open or socket (fds).

Performance. This section measures the performance
overhead introduced by the syscall checking mechanism.
We begin with a description of results from micro-
benchmarks that measure the impact on individual system
calls, and then measure the effect on the overall execution
time for a number of programs.

Table 4 presents the overheads introduced by these tech-
niques on a per-system-call basis. These results were ob-
tained by executing each system call 10,000 times using a
loop, and measuring the total number of CPU cycles us-
ing the Pentium processor’s rdtsc instruction, which reads
a 64-bit hardware cycle counter. The last two rows indi-



Program Name Type Description

bzip2 CPU file compression program from SPEC INT 2000 benchmark.
gzip-spec CPU file compression program from SPEC INT 2000 benchmark.
crafty CPU Game playing (Chess) program from SPEC INT 2000 benchmark
mcf CPU combinatorial optimization program from SPEC INT 2000
vpr CPU FPGA circuit and routing placement from SPEC INT 2000
twolf CPU Place and route simulator from SPEC INT 2000
gcc syscall & CPU Gnu C compiler from SPEC INT 2000
vortex syscall & CPU Object oriented database from SPEC INT 2000
pyramid syscall Multidimensional database index creation
gzip syscall file compression program

Table 5. Benchmark suite

Original Authenticated
System Call Cost Cost Overhead

(cycles) (cycles) (%)
getpid() 1141 5045 342.2
gettimeofday() 1395 5703 308.8
read(4096) 7324 10013 36.7
write(4096) 39479 40396 2.3
brk() 1155 5083 340.1
rdtsc cost 84 84
loop cost 4 4

Table 4. Effect of authentication

cate the overhead of the measurement process itself. Each
experiment was repeated 12 times; the highest and lowest
readings were discarded, and the average of the remaining
10 readings is used in the table. Column 2 gives the num-
ber of cycles required to execute an unmodified system call
on an unmodified kernel, while columns 3 and 4 show the
effect of authenticated system calls.

The results indicate a noticeable cost for the checking
mechanism, about 4000 cycles for each call. As might be
expected, however, on a percentage basis, the overhead is
much more significant for simple system calls such as get-
pid and gettimeofday than for more complex calls like write,
where the costs associated with buffering and memory ac-
cesses dominate.

To measure the effect of these techniques on the over-
all performance of applications, we compared the running
times of 10 programs and their protected counterparts (ta-
ble 5). These programs can be classified as either CPU
or system call intensive, as shown in the table; the CPU-
intensive programs are from the SPECint-2000 benchmark
suite, while the system call intensive programs are a col-
lection of common applications that make a large number
of system calls. The programs were compiled using gcc
3.2.2 into statically linked relocatables that were then pro-
cessed using our binary rewriting system, PLTO. Two types

Program Original Authenticated
Time Std. Time Std. Overhead

(secs) Dev. (secs) Dev. (%)

bzip2 196.80 1.46 198.56 2.67 0.89
gzip-spec 155.38 0.14 156.39 0.19 0.65
crafty 108.32 0.15 108.39 0.27 0.06
mcf 240.96 8.22 244.96 1.35 1.66
vpr 221.25 1.24 228.25 3.38 3.16
twolf 389.97 5.58 402.59 8.38 3.24
gcc 92.88 1.19 93.97 0.74 1.17
vortex 3.80 0.01 3.91 0.01 2.89
pyramid 0.99 0.01 1.02 0.01 3.03
gzip 2.78 0.03 2.82 0.03 1.01

Average 1.78

Table 6. Performance overhead

of executables were created: unauthenticated binaries cor-
responding to the unmodified program and authenticated
binaries that use authenticated system calls. We use unau-
thenticated binaries generated by PLTO rather than simply
gcc as the baseline, since PLTO itself applies certain opti-
mizations such as dead code elimination, basic block lay-
out, and instruction scheduling. As a result, applying these
optimizations in both cases gives the most accurate repre-
sentation of the actual cost of an authenticated call. The cost
of transforming the programs including PLTO optimizations
ranged from 3.19 seconds for mcf to 85.37 seconds for gcc.

Our experiment consisted of measuring the time taken
for each program to execute on a fixed set of inputs. The
time utility was used to measure the time taken by each
program, with the total computed as the sum of the user and
system time. As before, each experiment was repeated 12
times; the highest and lowest readings were discarded, and
the average of the remaining 10 readings is used in the table.
The results, reported in table 6, indicate a modest overhead
ranging from 0.06% to 3.24%.

Our final experiment studies the effect of the authenti-



cation mechanism on a multi-program benchmark. This
benchmark is similar to the Andrew Benchmark and con-
sists of a series of tasks that perform routine operations
such as file creation, directory creation, file compression,
file archival, permission checking, moving files, deleting
files, and sorting the content of files. Each iteration of the
benchmark results in the invocation of about 12000 sys-
tem calls. Authenticated versions of several general pur-
pose tools such as gzip, gunzip, rm, chdir, mv, chmod, tar,
cat, and cp were used to perform the tasks. The execution
time of the benchmark using original binaries was 258.68
seconds, while the execution time for authenticated binaries
was 261.50 seconds, an increase of only 1.09%.

It is difficult to compare the overhead of authenticated
system calls with other system call monitors because each
system enforces different policies. Note, however, that the
total overhead of our approach is well below that of other
systems, even though we do policy checking on all system
calls, unlike, for example, Systrace [15] and Ostia [5].

4. Improving Policies

This section describes techniques for making policies
more expressive to allow, for example, more complete ar-
gument coverage. We have not yet implemented these tech-
niques, but we anticipate that they will all be relatively
straightforward extensions to the existing system.

Meta-policies and policy templates. An ASC meta-
policy is a specification that dictates how strict a policy is
required for each system call. In particular, for each sys-
tem call, the meta-policy indicates whether the call site must
be specified in the policy and which arguments of the sys-
tem call must be constrained. Compared with our basic ap-
proach, meta-policies focus on what must be protected for a
system call rather than what can be protected automatically
based on static analysis. Meta-policies would typically be
derived from the threat level of different system calls [2]
and local administrative policies.

The meta-policy is given as input to the installer along
with the original program (figure 3). If the policy generator
cannot determine all the argument values required by the
meta-policy based on static analysis, it generates a policy
template with spaces for the additional required arguments.
An administrator can then hand-specify a value or a pattern
(e.g., “/home/smith/www/*”) for an argument based on ap-
plication knowledge or dynamic profiling. The result of this
is the complete ASC policy, which is used during the rewrit-
ing phase by the installer.

Patterns in meta-policies are implemented by having the
installer store the patterns in the program address space.
Patterns are protected and handled like constant value
strings: patterns are stored in the read-only text segment

template
policy

Trusted Installer

complete
policy key

rewriting
policy

generation
protected
program

original
program

meta−policy

Figure 3. Meta-policies and policy templates

and the address of the pattern is included in the policy de-
scriptor that is protected by the MAC. The kernel checks
the MAC to verify that the policy and the patterns have not
been modified, and uses standard pattern matching routines
to match the argument runtime value against the pattern.
Or, program checking techniques might be used to do the
pattern matching in the untrusted application, with a quick
verification by the kernel.

Meta-policies also play a role in extending authenticated
calls to handle dynamic libraries. With dynamic libraries,
system call sites for calls within the library are not known
until the library is loaded at runtime. This means that our
basic approach cannot protect the call site from alteration
using a MAC, as is done with statically-linked binaries. In
addition, arguments used by system calls in dynamic li-
braries are often passed as arguments to library functions,
meaning that their values cannot be determined by static
analysis.

Dynamic libraries are processed based on the security
requirements stated in the meta-policy as follows. The dy-
namic libraries on a machine are installed first before the ap-
plication programs. During this process, if a system call in
a dynamic library function cannot satisfy the meta-policy—
that is, static analysis cannot generate a complete policy—
the specific function is removed from the dynamic library
and set aside for static linking with application programs
that require the function. Once this has been done for all
system calls in the library, the functions that remain have
their system calls transformed into authenticated calls in the
same manner as before. Functions in this new protected dy-
namic library can then be loaded at runtime. Note that since
a single meta-policy is used for the installation of each dy-
namic library, it must be something that is appropriate for
all applications that use that library on a given machine.

Policies with state. Another useful feature is to allow
policies that rely on state of some sort. For example, one
might want a policy that requires that each call to open must
be followed by a close before open can be called again.
Here, the state would be a boolean indicating whether open
is allowed. The state variable would be checked and modi-
fied by the syscall checker when an open is called, and mod-



ified again when close is called.
An obvious way to support policy state is to store the

state in the kernel. However, one of the virtues of authen-
ticated system calls is that they require minimal change to
the kernel, something that would be lost if the state is large
or has a complex structure. Therefore, we would like a way
to keep any policy state in the application itself, with only
the updates and maintenance being done by the kernel.

This can be achieved using the idea of on-line memory
checkers, where a data structure is stored in unreliable mem-
ory, and a trusted checker with a small amount of reliable
memory verifies the correctness of each update as it oc-
curs [3]. Assume that some per-process state in the form
of a byte string is required to implement policy state. Then,
we modify the basic authenticated system call approach as
follows. First, the kernel is modified to maintain a single
counter variable for each process, initialized to 0 and stored
in kernel space. Then, the installer is changed to add one
variable to the data segment of each application to hold the
policy state (the byte string), and a second variable to hold a
MAC for the state. The state variable is initialized as needed
by the policy, and the state MAC is calculated over the ini-
tial state and the initial application counter value, 0. Point-
ers to the policy state and state MAC are then passed as
additional arguments in each authenticated system call.

At syscall checking time, if the policy for the system
call depends on the policy state, the kernel recomputes the
state MAC using the application counter and the policy state
passed in the call. If the recomputed MAC matches the state
MAC passed in by the application, the call is allowed to pro-
ceed; otherwise, the application is terminated. If the policy
requires changing the policy state, the kernel increments the
application’s state counter and calculates a new state MAC
over the new counter value and policy state. The new state
MAC is stored over the previous state MAC in application
space.

Once again, our cryptographic assumption is that it is
computationally infeasible for an adversary to compute a
valid MAC for some desired policy state and state counter.
The kernel-space state counter prevents the adversary from
re-using state MACs computed by the kernel for previous
states.

Call graph. A simple but useful example of a policy re-
quiring state is one based on the application’s call graph.
Such a policy could, for example, require that the applica-
tion’s system call trace be a path in the call graph, providing
further protection against compromised applications. Poli-
cies of this type are used by Wagner and Dean [22], who use
static analysis to construct a conservative approximation of
the call graph, which is then encoded as a finite automaton
for syscall checking.

Policies of this type are easily implemented with authen-

ticated system calls. The installer already computes the call
graph of the system calls of an application. Given this call
graph, we can label each node of the call graph by its call
site. The policy state becomes the call site of the last node
executed by the application. The policy of each system call
is then extended to say that the policy state must be one of
the predecessors of the system call in the static call graph.
Syscall checking in the kernel is extended to verify that the
previous call site is in the list of predecessors given in the
policy, and to update the policy state to the new call site.

As was the case with the general issue of state-based
policies, some of the work can be moved from the kernel
to the application to minimize the impact on the kernel. For
example, we could force the application to calculate the pre-
decessor of the node from the list of possibilities, and pass
this in to the kernel to verify.

Capability tracking. Another useful feature for policies
is the ability to specify that an argument to a system call
be based on arguments or return values of previous sys-
tem calls. An example would be a policy for a read sys-
tem call that requires that the file descriptor argument be a
value returned by a previous open system call [20]. We call
policies of this sort capability tracking policies, since such
arguments are being used in a manner analogous to capabil-
ities. We illustrate how the basic authenticated system call
approach can be extended to support this feature using the
example of file descriptor tracking.

A naive implementation of file descriptor tracking would
use policy state to store the last file descriptor returned by
each call to open. The policy for each read system call
would specify that the file descriptor should match the file
descriptor for the desired open system call. However, this
ignores the fact that an open system call can be executed
more than once, that more than one file descriptor returned
by the open can be active at once, and that file descriptors
can be reused after they have been closed.

A better approach is to store, for each open system call,
a set of currently active file descriptors. The policy for each
open then adds a file descriptor to the set, while the pol-
icy for close removes a file descriptor. This involves fairly
complicated data structures, so we would not use the sim-
ple policy state implementation described above, but rather
a more efficient implementation based, for example, on au-
thenticated dictionaries.

5. Discussion

File name normalization. A recurring problem for sys-
tem call monitors has been dealing with race conditions
caused by features such as symbolic links and relative file
names. For example, consider a policy that allows an ap-
plication to open a temporary file, /tmp/foo. An attacker



could try to exploit this by creating a symbolic link named
/tmp/foo that points to /etc/passwd, and then overwriting the
password file by opening and writing /tmp/foo.

To avoid this, system call monitors often use the conven-
tion that a file name in a policy must refer to the normal-
ized file name, that is, the name of the file after all sym-
bolic links have been followed. While doing normalization
correctly can be complex, strategies developed elsewhere
for performing this step in the kernel during syscall check-
ing [4] apply to our approach. In addition, we anticipate
that it is possible to move some of the processing into the
untrusted application, using techniques similar to those de-
scribed above in section 4 for state-dependent policies.

Frankenstein attacks. An application protected by our
approach can become compromised, for example, through a
buffer overflow, giving an attacker control of the application
process. The process would not be able to execute arbitrary
system calls, but it could execute any authenticated system
calls in the application, provided it did not change the call
site and parameters covered by the policy. This can lead to
mimicry attacks [23], which are well known and which can
be defended against by using more precise policies.

Our current prototype implementation is vulnerable to a
similar, but more subtle attack: the compromised applica-
tion could execute authenticated system calls that it finds
in other applications on the system. Once the attacker has
control of an application, it might use it to examine the
other applications on the system, and construct and execute
a new application composed of authenticated system calls
from many applications. We call this a Frankenstein attack.

Call graph policies can defend against such Frankenstein
attacks. Recall that a call graph policy requires an applica-
tion to execute system calls in an order consistent with its
static call graph. The call graph of an application is self-
contained, so if we impose a call graph policy on all of
the applications, a Frankenstein program would be forced
into executing only the system calls of a single application,
namely, the application that supplies the first authenticated
system call executed by the Frankenstein program. We only
need to take care that the installer use distinct labels for the
nodes of all the application programs.

Another kind of Frankenstein attack targets the string lit-
erals that can appear in policies. In the current implemen-
tation, a string literal that appears in a policy is encoded as
its address. The MAC produced is therefore dependent on
the address, and not the contents, of the string. We are re-
lying on the memory protections of the operating system to
prevent a rogue process from modifying its string literals.
However, it might be possible for a rogue process to build
an altered copy of itself, identical except for the contents
of some of the string literals, and transfer control (via exec)
to the copy, while respecting even a call graph policy. One

way to prevent this would be to protect the string contents
by a MAC rather than, or in addition to, the address. This
must be done with care, however, as the adversary gets to
choose the actual arguments to the system call, and could
pass in a very long string or an inaccessible address in an
attempt to disrupt the kernel system call checking code.

Related work. System call monitoring falls into the
broader area of intrusion detection systems. An intrusion
detection system can try to detect misuse (known attacks)
or anomalies (deviation from normal behavior). Misuse de-
tectors can be vulnerable to previously unknown attacks,
while anomaly detectors can suffer from false alarms. Our
system is an anomaly detector that avoids false alarms be-
cause of our conservative static analysis. The basic idea
of constructing semantic models of “legitimate” system call
behaviors for a program in terms of sequences of system
calls, and monitoring departures from such models, was
originally proposed by Forrest et al. [9, 24].

System call monitoring can be implemented entirely in
user space [12, 13], but typically this is not secure against
attacks such as buffer overflows, so this is not appropriate
for our setting. User-space implementations can be secure
for applications written in a safe language such as Java [21].
However, most systems have focused on applications writ-
ten in unsafe languages, so they are implemented entirely in
the kernel [2, 14, 19, 20] or by using kernel hooks or patches
in combination with a user-space policy daemon or monitor
[4, 5, 8, 11, 18, 22].

Our implementation uses a kernel modification in com-
bination with binary modifications to the untrusted user ap-
plication itself, and does not rely on a separate policy dae-
mon. Instead, we use cryptographic and program checking
techniques to ensure that any work done by the untrusted
application regarding policy decisions is done correctly.

In comparison to systems implemented entirely in-
kernel, our kernel modifications are minor—a couple of
hundred lines of code compared to thousands with other
systems. A completely in-kernel implementation must
maintain the policies and the logic for determining which
policy applies to a given call; we place these burdens on
the application. Note in particular that the exact policy for a
given authenticated system call is provided by the call itself.
This gives us an advantage in speed and simplicity.

In comparison to systems implemented with user-space
policy daemons, we have the advantage of fewer context
switches, leading to a very modest overhead. Avoiding
a separate monitor process simplifies policy checking, be-
cause the operating environment (current working directory,
etc.) does not have to be mirrored, some race conditions are
avoided, and we do not have to protect against the user ap-
plication killing the monitor.

Policies for most system call monitors are developed by



hand or by training; Wagner and Dean [22] is the only other
system we are aware of that uses static analysis. Wagner et
al. [22, 23] introduced mimicry attacks and suggested mak-
ing policies more precise to combat them; authenticating
system call arguments and using call graph policies are two
of their suggestions that we use.

6. Conclusions

Attacks that attempt to compromise a computer system
using the system call interface are an increasingly important
threat. Monitoring system calls and disallowing those that
do not conform to a program’s security policy is an effec-
tive mechanisms for stopping a large class of such attacks.
Essentially, a system call monitor can convert a potentially
successful attack into a fail-stop failure [16] of the compro-
mised process.

In this paper, we presented authenticated system calls,
a novel approach to system call monitoring. This approach
has been implemented using only small modifications to the
kernel, without the need for heavyweight kernel data struc-
tures or the use of a user-space policy daemon at runtime.
We also presented an automated approach for generating se-
curity policies based on static analysis, something that can
be extended using other techniques if necessary.

We evaluated the approach on Linux and, for policy gen-
eration, on OpenBSD. In doing so, we provided measures
of the effectiveness of policy generation and quantified the
modest runtime impact of using authenticated system calls
over unprotected ones. We also presented a number of ex-
tensions to the basic approach that can increase its effective-
ness by improving the expressiveness of policies.

Acknowledgments

S. Debray provided valuable insights on the technical issues
in this paper. This work was supported in part by NSF under
grants EIA-0080123, CCR-0113633, and CNS-0410918.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[2] M. Bernaschi, E. Gabrielli, and L. Mancini. Operating sys-
tem enhancements to prevent the misuse of system calls. In
ACM CCS, pages 174–183, 2000.

[3] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories. In IEEE Symp. on
Foundations of Computer Science, pages 90–99, 1991.

[4] T. Garfinkel. Traps and pitfalls: Practical problems in sys-
tem call interposition based security tools. In Network and
Distributed Systems Sec. Symp., 2003.

[5] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A dele-
gating architecture for secure system call interposition. In
Network and Distributed Systems Sec. Symp., 2004.

[6] J. Geovedi, J. Nazario, N. Provos, and D. Song. Project hairy
eyeball. http://blafasel.org/∼floh/he/.

[7] B. Gladman. AES combined encryption/authentication li-
brary. http://fp.gladman.plus.com/AES/index.htm.

[8] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A secure
environment for untrusted helper applications. In Usenix
Sec. Symp., 1996.

[9] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detec-
tion using sequences of system calls. Journal of Computer
Security, 6(3):151–180, 1998.

[10] T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC,
2002.

[11] K. Jain and R. Sekar. User-level infrastructure for system
call interposition: A platform for intrusion detection and
confinement. In ISOC Network and Distributed Sec. Symp.
(NSDD00), pages 19–34, 2000.

[12] M. Jones. Interposition agents: Transparently interposing
user code at the system interface. In ACM SOSP, pages 80–
93. 1993.

[13] E. Krell and B. Krishnamurthy. COLA: Customized over-
laying. In Winter USENIX Conf., pages 3–7. Jan. 1992.

[14] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the de-
tection of anomalous system call arguments. In LNCS 2808,
pages 326–43, 2003.

[15] N. Provos. Improving host security with system call policies.
In USENIX Sec. Symp., 2003.

[16] R. Schlichting and F. Schneider. Fail-stop processors: An
approach to designing fault tolerant computing systems.
ACM TOCS, 1(3):222–238, Aug. 1983.

[17] B. Schwarz, S. Debray, and G. Andrews. Plto: A link-time
optimizer for the Intel IA-32 architecture. In Workshop on
Binary Translation (WBT-2001), 2001.

[18] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program
behaviors. In IEEE Symp. on Sec. and Priv., pages 144–155,
2001.

[19] R. Sekar and P. Uppuluri. Synthesizing fast intrusion pre-
vention/detection systems from high-level specifications. In
8th USENIX Sec. Symp., pages 63–78, 1999.

[20] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and
D. DuVarney. Model-carrying code: A practical approach
for safe execution of untrusted applications. ACM SOSP,
Oct. 2003.

[21] V. Venkatakrishnan, R. Peri, and R. Sekar. Empowering mo-
bile code using expressive security policies. In Workshop on
New Sec. Paradigms, pages 61–68. 2002.

[22] D. Wagner and D. Dean. Intrusion detection via static analy-
sis. In IEEE Symp. on Sec. and Priv., pages 156–169, 2001.

[23] D. Wagner and P. Soto. Mimicry attacks on host-based intru-
sion detecion systems. In ACM CCS, pages 255–264, 2002.

[24] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting in-
trusions using system calls: Alternative data models. In
IEEE Symp. on Sec. and Priv., 1999.


