
System Call Monitoring Using
Authenticated System Calls

Mohan Rajagopalan, Member, IEEE, Matti A. Hiltunen, Member, IEEE Computer Society, Trevor Jim,

and Richard D. Schlichting, Fellow, IEEE

Abstract—System call monitoring is a technique for detecting and controlling compromised applications by checking at runtime that

each system call conforms to a policy that specifies the program’s normal behavior. Here, we introduce a new approach to

implementing system call monitoring based on authenticated system calls. An authenticated system call is a system call augmented

with extra arguments that specify the policy for that call, and a cryptographic message authentication code that guarantees the integrity

of the policy and the system call arguments. This extra information is used by the kernel to verify the system call. The version of the

application in which regular system calls have been replaced by authenticated calls is generated automatically by an installer program

that reads the application binary, uses static analysis to generate policies, and then rewrites the binary with the authenticated calls.

This paper presents the approach, describes a prototype implementation based on Linux and the PLTO binary rewriting system, and

gives experimental results suggesting that the approach is effective in protecting against compromised applications at modest cost.

Index Terms—Intrusion tolerance, operating systems, security policy, sandboxing, compiler techniques.

Ç

1 INTRODUCTION

COMPUTER systems have long been subjected to attacks
that involve either altering existing code to take

malicious actions or introducing new executables into the
system that later compromise the system in some way.
Worms, for example, propagate by altering program
executables on their target. The executable might be a
running program that the worm corrupts through a buffer
overflow, an executable overwritten by a macroprogram
contained in an e-mail message, or a library installed from a
corrupted code repository as part of a regular software
update. This wide mix of both targets and techniques make
it challenging to develop countermeasures, especially those
with broad applicability.

Despite the different approaches used to introduce
altered code onto a machine, these attacks share one
characteristic—they typically exploit the system call inter-
face to take malicious action. It is only through this interface
that compromised code can, for example, write to the disk
or send a network packet. System call monitoring is a widely
used technique that exploits this characteristic to detect
compromised applications and sandbox them to minimize
the damage they can cause [3], [8], [9], [11], [14], [15], [17],
[20], [25], [28], [29], [30], [33], [34]. The approach is based on
having a policy that captures an application’s normal system
call behavior and then halting execution if an application
deviates from this normal behavior during execution. While
system call monitoring by itself cannot fully protect a

system, it has proven to be a valuable tool and can be used
in conjunction with other techniques to make intrusions
more difficult and to minimize their impact.

A simplified version of system call monitoring is
illustrated in Fig. 1. The System Call Monitor (SCM) checks
system calls at runtime using the application’s policy, and
either allows or disallows them depending on whether or
not they match the policy. In the figure, the vertical line
from the application through the SCM to the OS kernel on
the left labeled A illustrates a call that is allowed to proceed
after being checked by the SCM. The line on the right
labeled B, on the other hand, illustrates a call that is blocked
by the SCM because it does not match the policy, i.e.,
deviates from the application’s normal behavior. Issues that
must be addressed to realize such an approach include
implementing the SCM to minimize runtime checking
overhead and vulnerability to attack, determining an
application’s normal behavior and using that to generate a
policy, and making policies available to the SCM at
runtime. Note that the SCM can also be viewed as a
reference monitor [2] for system calls, that is, it validates all
systems calls made by a program against those authorized
for the program.

This paper presents a new approach to implementing
system call monitoring that uses authenticated system calls as
its key mechanism. An authenticated system call is a system
call that has been transformed to include additional
arguments that specify the call’s policy, information about
the current execution state, and a message authentication
code (MAC) that guarantees the integrity of the policy and
relevant arguments. This MAC is computed using a
cryptographic key that is available at runtime only to the
kernel. When an authenticated call is invoked, the kernel
computes an encoding of the call’s runtime behavior from
the arguments and other information, computes a MAC
over this encoding using this same key, and compares it

216 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2006

. M. Rajagopalan is with Intel Corporation, 2200 Mission College Blvd.,
Santa Clara, CA 94054. E-mail: mohan.rajagopalan@intel.com.

. M.A. Hiltunen, T. Jim, and R.D. Schlichting are with AT&T Labs-
Research, 180 Park Avenue, Florham Park, NJ 07932.
E-mail: {hiltunen, trevor, rick}@research.att.com.

Manuscript received 26 Sept. 2005; revised 6 Apr. 2006; accepted 25 Apr.
2006; published online 3 Aug. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSCSI-0133-0905.

1545-5971/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

with the MAC in the call. If it matches and the call passes
other checks, the call’s behavior complies with the policy
and it is allowed to proceed; otherwise, the application is
terminated.

A key aspect of our approach is that, even though the
policy, extra arguments, and MAC are part of the applica-
tion, a compromised application cannot successfully create
a new authenticated system call or tamper with an existing
authenticated call since it does not have access to the
cryptographic key. This division of SCM functionality
between the application and the kernel is the key contribu-
tion of this paper. Our approach contrasts with other
system call monitoring approaches that either rely on user-
space policy daemons [8], [9], [14], [17], [28], [33] or require
large-scale changes to the kernel [3], [20], [29], [30]. In
comparison with our approach, the former can have
unacceptably high execution costs unless frequently used
system calls are special-cased for enforcement in the kernel,
while the latter results in a more complex kernel. Assuming
identical policies, all of these approaches are to a first
approximation comparable in the types of attacks they
prevent.

The second important aspect of our approach is the
automatic generation of each system call’s policy and the
automatic transformation of the application to replace each
call with the equivalent authenticated call. This is done by a
trusted installer program that reads the application binary,
uses static analysis to determine the appropriate policy for
each call, and then rewrites the binary with the authenti-
cated calls. The use of static analysis has significant
advantages over methods based on handwritten policies
or policies obtained by training, i.e., recording the system
call behavior of the application over a period of time. In
particular, it is completely automatic, produces policies
quickly, and does not miss system calls invoked by rarely
used parts of the application. We demonstrate these
advantages empirically by comparing our policies with
those published elsewhere for the well-known Systrace
system call monitoring system [25].

The primary contribution of this paper is to present a
new approach to implementing system call monitoring
based on authenticated system calls. This is done as follows:
First, Section 2 explains system call monitoring in more
detail. Section 3 then describes the details of our approach,
including authenticated system calls, policy generation,
installation, and system call checking. Section 4 describes a
prototype implementation on Linux that uses the PLTO

binary rewriting system [27] to do policy generation and
installation; this section also provides experimental results,
including performance overhead and evaluation of the

effectiveness of policy generation. We describe potential
extensions to policies in Section 5. Finally, Section 6
summarizes the contributions of the paper.

2 SYSTEM CALL MONITORING

The basic idea of constructing semantic models of a
program’s legitimate system call behavior in terms of
sequences of system calls and monitoring departures from
such models was originally proposed by Forrest et al. [15],
[34]. Since then, many different system call monitors have
been developed that vary in how they address the following
fundamental issues related to policies:

. Policy expressiveness. What policies can be enforced?

. Policy creation. How is the policy of an application
determined?

. Policy enforcement. Are policies enforced in the
kernel, outside the kernel, or using some combina-
tion of the two approaches?

To introduce the basics of system call monitoring and how
authenticated system call relates to other approaches, we
consider each of these issues in turn.

2.1 Policy Expressiveness

In system call monitoring, each system call in a program has
an associated system call policy that specifies properties that
must be satisfied when the call is executed. The program’s
overall policy is the collection of its system call policies. In
principle, a system call monitor should be able to enforce
any computable policy. In practice, however, most system
call monitors restrict the class of policies that they enforce
for reasons of either efficiency or simplicity. The goal of this
section is to give some examples to illustrate common types
of policies.

The properties expressed by a system call policy can be
viewed as constraints on the execution of the system call. A
typical policy, for example, may require that a system call
be constrained to a specific system call number (name), or
must be invoked from a particular memory address in the
program (call site), or both. It might also specify allowed
values for the arguments, using either concrete values (e.g.,
“5” or “/dev/console”) or patterns (e.g., “/tmp/*”).
Policies of these types are used in many existing system
call monitoring systems. For example, Systrace supports
policies in which the system call number and the argument
values can be specified, the latter using either patterns or
concrete values.

System call policies can also constrain more global
behaviors, such as the acceptable order of system call
executions. For example, the collection of system call
policies for a program might constrain the application’s
system call trace to be a path in the call graph. In this case,
each system call policy could include a list of system calls
that are possible predecessors for the given call. Policies of
this type are also supported in certain existing systems [11],
[15], [31], [33], [35].

While system call policies can be quite general, they do
have one inherent limitation—they can only be checked
when a system call is invoked. As a result, system call
monitoring cannot prevent attacks such as buffer overflow;

RAJAGOPALAN ET AL.: SYSTEM CALL MONITORING USING AUTHENTICATED SYSTEM CALLS 217

Fig. 1. System call monitoring.

once a monitor approves a system call that reads into a
buffer, there is no mechanism in place to prevent the read
from going past the end of the buffer. Rather, the goal of
system call monitoring is to isolate or sandbox compro-
mised applications to minimize the damage they can cause.

Therefore, in system call monitoring, a process can
become corrupted through a buffer overflow or some other
attack and then run freely, as long as it does not make a
system call. Depending on the operating system, such a
process can consume significant resources or take other
actions that affect the system. For example, under Linux, a
process can consume CPU cycles, access its memory space
to cause paging, or even perform reads and writes to files
that were memory mapped before the attack occurred.
However, the process would not be able to open new files,
or even write to files or network sockets using file
descriptors, since those operations involve system calls.

2.2 Policy Creation

System call policies are meant to capture the normal
legitimate behavior of a program. In practice, three
techniques can be used to create policies:

. Manual. Policies can be written by hand.

. Training. Policies can be learned by examining some
sample runs of the program.

. Static analysis. Policies can be determined through
static analysis of the program.

Handwritten policies can be extremely valuable, particu-
larly when they are written by someone with deep knowl-
edge of the program. However, they are tedious to produce
and maintain, so they are most often used selectively in
combination with the other two techniques.

Most existing system call monitors determine policies
through training. Training can be automatic, so policies are
easy to produce and maintain. However, training by its
nature does not examine all possible behaviors of the
program, so policies produced through training may be
overly restrictive. This is a significant barrier to the use of
the system call monitor, because system administrators
must either spend a lot of time checking false alarms or start
ignoring alarms, including alarms for real attacks.

Relatively few system call monitors use the third
technique, static analysis; Wagner and Dean [33] and Giffen
et al. [11], [12] are notable examples. Static analysis is
automated, so policies are easy to produce and maintain,
and conservative analyses have the great advantage of
eliminating false alarms. Our implementation of authenti-
cated system calls uses conservative static analysis to
produce policies.

Ideally, whatever procedure is used to produce policies,
the end result would be a policy that exactly captures the
acceptable behavior of the program. Of course, in practice,
this is impossible. An extreme example is a root shell
program, since for administrative purposes, a root shell
may need to take arbitrary actions, including overwriting
the entire file system. As a result, it is difficult to impose a
policy that would provide meaningful protection in the
event the shell program becomes compromised.

A more subtle example was explored by Wagner and
Dean [33], who introduced mimicry attacks. In a mimicry

attack, a corrupted program is able to find some sequence
of system calls that is within the normal behavior of the
program according to policy, but which can nevertheless
cause harm. The best defense against mimicry attacks is
to have more precise policies. While our work has not
focused on this issue directly, we can implement all of
the sorts of policies used in other system call monitors
with at least comparable efficiency, and hence, provide as
much protection against mimicry attacks as other system
call monitors. In addition, note that other measures
designed to address mimicry attacks specifically can be
used in conjunction with authenticated system calls to
provide additional protection [21].

2.3 Policy Enforcement

A system call monitor checks each system call against its
policy at runtime and either accepts or rejects the call. This
security-critical check can be performed in user space or in
the kernel. Systems that intercept system calls in user space
[18], [19] can be vulnerable to corruption by such exploits as
buffer overflows when applied to programs written in
unsafe languages. Such an approach may, however, be
appropriate for programs written in safe languages such as
Java [32] or in systems where unsafe languages are
compiled with additional checking for safety [7], [23].
Systems that work with possibly unsafe binaries like ours
have previously been implemented entirely in the kernel, or
by a combination of a kernel hook or patch with a user-
space policy daemon or monitor.

Our authenticated system calls use a novel arrangement
—a kernel modification in combination with binary mod-
ifications to the untrusted user application itself, with no
separate policy daemon. Instead, we use cryptographic and
program checking techniques to ensure that any work done
by the untrusted application regarding policy decisions is
done correctly. In comparison to systems implemented
entirely in the kernel, our kernel modifications are minor—a
couple of hundred lines of code compared to thousands
with other systems. A completely in-kernel implementation
must maintain the policies and the logic for determining
which policy applies to a given call; we place these burdens
on the application. Note, in particular, that the exact policy
for a given authenticated call is provided by the call itself.
This gives us an advantage in speed and simplicity. In
contrast to systems implemented with user-space policy
daemons, we have the advantage of fewer context switches,
leading to a very modest overhead. Not having a separate
monitor process also simplifies policy checking because the
operating environment (e.g., current working directory)
does not have to be mirrored, some race conditions are
avoided, and the monitor process cannot be killed by a
compromised user application.

3 USING AUTHENTICATED SYSTEM CALLS

3.1 Approach Overview

Our system call monitoring technique is based on three
steps: analyzing the program to generate policies, trans-
forming the program to replace system calls with authenti-
cated system calls, and runtime checking by the kernel to
ensure that each call matches its policy. The first two steps

218 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2006

together comprise the installation process, which is illu-
strated in Fig. 2. The program binary is read by a trusted
installer program, which first uses static analysis to
generate a policy that captures different characteristics of
the expected behavior for each system call, and then
rewrites the binary so that each system call is replaced by
an authenticated system call. The arguments of an
authenticated call include the arguments of the original
system call plus some additional arguments, including
policy information and a cryptographic MAC. The key for
the MAC is specified during the installation process. The
last step, system call checking, is illustrated in Fig. 3. At
runtime, each system call is intercepted by the kernel and,
after verifying the MAC using the same key as used during
installation, the behavior of the call is verified against the
policy. If the behavior matches the policy, the call is
allowed; otherwise, the call is rejected and the executing
process terminated.

Our assumptions about attacker behavior are consistent
with those used for other system call monitors. We assume
that applications may contain any type of vulnerability,
including those that make them susceptible to attacks such
as buffer overflow attacks, heap overflow attacks, and
format string attacks. We also assume that the attacker may
have access to the application source and binary, and that it
can tamper with any part of the binary using tools such as
debuggers and simulators. Finally, we assume that the
MAC and policy information are visible as plain text in the
binary, that the key is accessible only to the installer and to
the kernel, and that it is computationally infeasible to break
the key.

Our current system call policies allow properties related
to the system call name, call site, control flow, and constant
parameter values such as integers and string literals to be
constrained. As an example, the installer might be able to
derive the following logical policy for an open call in the
program:

Permit open from location 0x806c462

Parameter 0 equals ”/dev/console”

Parameter 1 equals 5

If preceded by the system call at 0x80a1c04

This policy captures the expected behavior of the call, i.e.,
that the call is an open from the call site at memory address
0x806c462, and that the first argument is a pointer to the
string “/dev/console” and the second argument is the
constant 5. Furthermore, the previous system call made by
the program must have been from location 0x80a1c04. If a
policy does not give a value for a parameter, then the
parameter is unconstrained and any value is allowed.
Section 5 extends policies to include, for example, policies

that allow argument values to match patterns, and
capability tracking policies for arguments such as file
descriptors.

3.2 Authenticated System Calls

Authenticated system calls are used as the key mechanism
for making the policy and other information needed for
system call checking available to the kernel. To do this, a
representation of the policy must be constructed and
included as one or more additional arguments to each
system call. Specific challenges in constructing such a
representation include the following:

. Policy variations. The policy must describe which
system call properties are included in the policy for a
given system call. For example, some of the argu-
ment values may be constrained while others may
remain unconstrained.

. String literals. Particular care must be taken for
arguments constrained to be string literals, because
the actual arguments can have unbounded length
and can potentially be chosen by an attacker.

. Global behavior. Specifying and implementing poli-
cies that constrain system call ordering requires not
only establishing relationships among system calls,
but also maintaining at runtime information about
system calls as they are executed.

Of course, the policy representation must also be designed
in such a way that an attacker cannot modify the policy
undetected. This aspect is implemented using a MAC as
described in the previous section; to avoid confusion with
other MACs that will be introduced, we subsequently refer
to this MAC as the call MAC.

The need to support policy variation is addressed by
constructing for each system call a policy descriptor, a 32-bit
integer that encodes information about which properties of
the system call are constrained by its policy. This descriptor
uses bits to indicate whether the value of each argument is
determined by the policy. It also indicates whether the
control flow policy for the call is specified. The policy
descriptor is then included as one of the additional
arguments in an authenticated call so that it is available to
the kernel for the checking phase.

Policies often require string arguments to be some
constant, but their arbitrary length and the indirection that

RAJAGOPALAN ET AL.: SYSTEM CALL MONITORING USING AUTHENTICATED SYSTEM CALLS 219

Fig. 2. Program installation.

Fig. 3. System call checking.

results from the use of a pointer as the actual argument
value mean that they need to be treated differently than
fixed-length numeric constants. For numeric constants,
including the argument value in the call MAC calculation
is sufficient to detect at runtime whether it has been
changed. However, a string argument is passed to the
kernel as a pointer to a NULL-terminated sequence of bytes.
If this sequence cannot be modified—for example, because
of read-only memory protection—then it suffices to include
the address of the sequence in the call MAC calculation in
the same way. However, this assumption is not always
valid. In such cases, we need to authenticate the contents of
the string, not just its address. The difficulty here is that the
attacker may replace a short string with a string that is
either very long or that extends into an inaccessible portion
of the address space; this could cause the checker to take
excess time (denial of service) or even trigger a kernel bug.

We address this issue by creating a new authenticated
string (AS) abstraction that is represented as the tuple
{length,MAC,string}, where length is a 4 byte entry,
MAC is a 128 bit message authentication code computed over
the contents of the string, and string is the contents of the
string. Each string constant used as an argument in a system
call is transformed by the installer into an AS, with the
representation being stored in a new section of the binary.
The pointer to the original string contents in the argument
list is then replaced with a pointer to string within the AS.
At system call time, the kernel verifies the contents of the
string using the MAC in the AS representation.

The final challenge of constraining more global behaviors
requires a way to specify and check policies that relate
multiple system calls. For our control flow policies, for
example, it must be possible to specify a policy in which a
given system call is allowed only if it immediately follows one
in a certain set of possible previous system calls, as
determined by the static analysis done during installation.
The first thing required to relate multiple calls is a way to
identify each call. While the exact address could be used, to
simplify both the analysis and the implementation, we
approximate system call locations by the basic block that
contains the system call, as computed by the installer. (This
representation also helps address specific types of attacks, as
described below in Section 5.) For control flow then, the set of
possible predecessor blocks is added as an extra argument to
the authenticated call as part of the overall system call policy.
Since this set is of arbitrary size and must not be corrupted by
an attack, it is stored as an authenticated string, with a pointer
being used as the actual argument.

Checking control flow policies or other global policies at
runtime often requires maintaining a policy state. For
example, for control flow policies, this state would include
the basic block of the most recently executed system call.
While it would be reasonable to maintain a small fixed-size
constant such as this directly in the kernel, other global
policies might require more extensive state and have a
correspondingly bigger impact on the kernel. Rather than
take this route, we instead embed this state in the
application binary, with updates done by the kernel.

Maintaining policy state in the application is done using
the idea of online memory checkers, where a data structure is

stored in unreliable memory and a trusted checker with a
small amount of reliable memory verifies the correctness of
each update as it occurs [4]. As a simple example of a
memory checker, we implemented a scheme for maintain-
ing the policy state for control flow checking in a variable
called lastBlock. The kernel maintains a single counter
variable for each process initialized to 0 and stored in kernel
space. The application itself is extended with two variables,
lastBlock and lbMAC, where the latter holds a MAC
calculated across the counter and lastBlock. A pointer to
lastBlock and lbMAC is then passed as an additional
argument in each authenticated system call. At system call
checking time, the kernel computes a MAC over the counter
stored in the kernel and the policy state lastBlock stored
in the application. If this MAC matches lbMAC, lastBlock
has not been corrupted and can be used in the control flow
policy check; otherwise, the application is terminated. To
update lastBlock, the kernel increments the application’s
state counter, changes lastBlock to the block of the
current call passed as an argument, and calculates a new
state MAC over the new values of the counter and
lastBlock. The new state MAC becomes the new value
of lbMAC in application space. Note that the counter acts as
a nonce to ensure that an attacker cannot replay old values
of lastBlock and lbMAC.

Putting this all together then, an authenticated system
call extends the original system call with the following
arguments, assuming that control flow is the global
behavior being specified:

. Policy arguments. The policy descriptor and pointer
to the authenticated string with the set of possible
predecessor system calls.

. Policy state arguments. Basic block of current call, and
a pointer to the lastBlock variable that holds the
identifier of the basic block of the previous system
call and the policy state MAC (lbMAC).

. Call MAC. MAC calculated over the policy argu-
ments, policy state arguments, some additional
information such as the system call number and call
site, and those regular arguments of the call that are
included in the policy descriptor.

Thus, there are five arguments that are added to each system
call by the installer to transform it into an authenticated call.
We now describe that process in more detail.

3.3 Installation

The trusted installer program is used by a security
administrator to generate the policy for each system call
in an application, and to produce an executable binary that
contains authenticated system calls. To do this, the installer
first reads in an application binary and disassembles it into
an intermediate representation that is used for all the
subsequent analysis and transformations. The final step in
processing the program is to convert this intermediate
representation back into the appropriate binary format and
rewrite the file. The system as a whole is protected once all
binaries that run in user space have been transformed to use
authenticated system calls by the installer.

The bulk of the work of the installer involves performing
static analysis on the program and transforming it in ways

220 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2006

discussed above. This includes not only replacing system
calls with authenticated calls, but also transformations like
replacing string arguments with authenticated strings and
inserting the code infrastructure needed to implement the
appropriate policy state. Actually generating the system call
policy for each call is one of the results of this process. Note
that one benefit of using static analysis is that the policies
generated are applicable and correct across all uses of the
resulting executable, including the case of shared binaries.

Before replacing system calls with authenticated calls,
the installer does a number of analysis and optimization
steps. For example, it uses standard compiler techniques
such as data and control flow analysis, strength reduction,
and constant propagation [1] to determine values for system
call arguments. String constants are also transformed into
authenticated strings at this point. The installer then
determines the application’s system call graph, which is
used for the control flow portion of the policy. This is
computed from the standard call graph of the program by
keeping only those nodes that correspond to system calls
and adjusting the edges appropriately. The resulting graph
uses the basic block to identify each system call, as
discussed above.

Once these two steps are completed, each system call is
transformed into an authenticated call by adding the extra
arguments described in the previous section. As a way to
illustrate some of the details of how this is done, we describe
how the installer constructs the encoded policy—i.e., a byte
string that is a self-contained representation of the policy—
that is used as the basis for computing the call MAC.

The encoded policy is built by concatenating bit
representations of all the elements that go into making up
the policy. This includes the system call number, the
address and the basic block number of the call site, the
policy descriptor, the argument values for those arguments
that are constrained, the set of possible predecessors, and
the address of the policy state variable. Specifically,
consider the following example policy:

Permit fcntl from location 0x806c57b in

basic block 1234

Parameter 0 equals ANY

Parameter 1 equals value 2

Possible predecessors 1235, 2010,3012

Basic block number of previous call stored

at 0x0810c4ab

For this policy, the installer constructs the byte string:

005c 00000013 0806c57b 0000002 081adcde

00000012 <16 byte stringMAC> 0810c4ab

Here, 005c is the system call number of fcntl. Next, 00000013
is the policy descriptor, the 32-bit number indicating that
the call site, parameter 1, and the control flow leading to the
system call are constrained by the policy. This is followed
by 0806c57b, the call site (address); and 00000002, the
policy-specified value for parameter 1. The next 24 bytes
correspond to the control flow policy. This includes
081adcde, the address at which the predecessor set is
stored; 0000012, the length of the authenticated string
storing the predecessor set; and a 16 byte MAC computed

on the contents of this string. The last four bytes of the
encoded policy indicate the address at which lastBlock is
stored, in this case 0810c4ab.

The installer computes a MAC over this byte string using
a key provided to the installer by the security administrator
at startup time. The prototype uses the AES-CBC-OMAC
message authentication code, which produces a 128-bit code
[16]. The installer adds the call MAC to the data segment of
the binary, and adds a pointer to it as an argument to the
system call.

3.4 System Call Checking

The kernel enforces an application’s system call policies at
runtime. When an authenticated system call occurs, the
kernel receives the normal arguments of the system
call—the system call number and the arguments to the
original unmodified call—and the five additional argu-
ments—the policy descriptor (polDes), the block number
of the system call (blockID), the set of predecessors stored
as an authenticated string (predSet), a pointer (lbPtr) to
the lastBlock policy state and last block MAC (lbMAC),
and the call MAC (callMAC). Furthermore, it can deter-
mine the call site based on the return address of the kernel
interrupt handler. Using this information, the kernel
validates that the system call complies with the specified
policy using the following steps:

1. Check callMAC.
2. Check the integrity of each string argument specified

in polDes.
3. Check control flow policy.

If all three checks are passed, the kernel carries out the
system call; otherwise, it terminates the process, logs the
system call, and alerts the administrator. Unauthenticated
calls are also blocked.

The first step is implemented by constructing an
encoding of the system call (the encoded call) using the
policy descriptor and other arguments in a manner similar
to the construction of the encoded policy by the installer.
Specifically, the encoded call is constructed by concatenat-
ing together the values that reflect the actual execution
behavior of the call: the system call number, the call site,
polDes, argument values specified in the policy descriptor,
blockID, predSet, the MAC for the predecessor set
authenticated string psMac, lbPtr, and lbMAC. For
constant numeric values, the value of the argument is used
directly in the encoding, while for authenticated string
arguments including predSet, the tuple {address,

length, stringMAC} is used. Note that since the address
points to the string in the AS representation, the 20 bytes
preceding address contain length and stringMAC. The
kernel then computes a MAC over this encoded call using
the key. If this MAC matches callMAC, the original
arguments of the system call comply with the policy, the
additional arguments have not been modified, the length
and stringMAC fields of the AS arguments have not been
modified, and the AS arguments have not been replaced
with some other AS.

The second step checks the authenticated string argu-
ments for modification using the MACs that were calcu-
lated for each string in the installation step. The kernel

RAJAGOPALAN ET AL.: SYSTEM CALL MONITORING USING AUTHENTICATED SYSTEM CALLS 221

simply reads a string of size length from the address of
the string argument, calculates a MAC over it, and
compares it with the string MAC. The integrity of predSet
is checked similarly since it is also stored as an authenti-
cated string.

The final step is to ensure compliance with the control
flow policy. This is done as follows:

1. Check whether lastBlock has been modified
(lbMAC == MAC(*lbPtr + counter,key)).

2. Check if lastBlock exists in predSet.
3. Increment the in-kernel counter for this application

(counter++).
4. Update policy state (lastBlock = blockID).
5. Update policy state MAC (lbMAC = MAC(blockID +

counter,key)).

System call checking is designed so that either MAC
matching or the control flow check fails if an application’s
behavior deviates from its policy. As already noted, the
arguments to the authenticated system call are under the
control of the application, which means that it might have
tampered with any of them, including the policy descriptor
and all the MACs, or it might have tried to construct a new
authenticated system call somewhere in the heap. However,
any change to the system call number, call site, policy
descriptor, or values of arguments constrained by the policy
would result in a change to the encoded call that is
constructed by the kernel. This, in turn, would change the
MAC needed to pass the kernel test. Our cryptographic
assumption is that it is infeasible for the adversary to
construct a matching MAC for its changes without access to
the key. The same reasoning holds for the MAC matching
done for authenticated strings. Hence, any attempt by the
application to change the system call in a way that violates
the policy will fail.

4 IMPLEMENTATION AND EXPERIMENTAL

EVALUATION

This section describes our prototype implementation of
authenticated system calls and gives the results of an
experimental evaluation. We first give an overview of the
implementation, then describe the policies generated by the
installer. For comparison, we also describe the sorts of
policies supported by the Systrace system call monitor.
Finally, we quantify the performance impact of authenti-
cated system calls compared to standard system calls.

4.1 Implementation Overview

Our trusted installer implementation is based on the PLTO

binary rewriting system [27]. PLTO reads a binary execu-
table program, disassembles the binary machine code into
an intermediate (assembly language) representation, and
performs static analyses and optimizations on the inter-
mediate representation before writing out an optimized
binary executable. The trusted installer uses some of the
static analyses and optimizations already provided by
PLTO, plus some that were implemented expressly for
authenticated system calls. Descriptions of the basic PLTO

analyses can be found in any standard compiler text (e.g.,
[1]); the remainder are outlined below.

The installer works as follows: First, PLTO is used to
divide the program into basic blocks and construct the
program’s call graph. We added an analysis step here that
determines the blocks responsible for system calls, as well
as the specific system call for each such block; this step uses
the facts that system calls correspond to the int 0x80

machine instruction and that the system call number is
placed in register EAX before the system call. PLTO’s
intermediate representation includes the address of each
instruction, which provides the return address of each
system call. This address in turn becomes part of the policy.

Since system calls are often made from stubs that are
invoked by many blocks, the next step is to analyze the call
graph to identify blocks that invoke these stubs and inline
the stubs. This inlining allows a different system call policy
to be used for each inlined site, rather than having just one
policy for the system call in the stub itself. Once the stubs
are inlined, each system call site is analyzed to determine
the arguments of the call. This is done by examining the
values pushed onto the stack prior to the call, and applying
a standard reaching definitions analysis from PLTO. This
allows each system call argument to be classified as follows:

. String. The address of a known string.

. Immediate. Some other constant, e.g., a known file
descriptor, the address of a nonstring, or the
address of a string whose contents are dynamically
determined.

. Unknown. The analysis was unable to predict a value
for the argument. This includes cases where the
argument has several reaching definitions, as well as
cases where the argument has none.

Finally, the graph giving all possible system call orderings
is calculated from the full call graph, which gives all
possible orderings of all basic blocks. This graph indicates
which system calls can immediately precede any given
system call, which becomes part of the policy.

Armed with the results of this analysis, PLTO is then
used to rewrite the program as described in Section 3. The
installer runs on Linux, PLTO’s native platform. The policy
generation portion of the installer has also been ported to
OpenBSD to compare policies generated on the two plat-
forms; this is used for the experimental evaluation in the
next section.

PLTO is an optimization tool, and, as a result, it requires
relocatable binaries (i.e., binaries in which the locations of
addresses are marked), so that addresses can be adjusted as
code transformations move data and code locations. Our
installer currently inherits this requirement, although it
should be straightforward to generate policies for binaries
without relocation information. One impact of this restric-
tion is that the binaries we test in the next section had to be
compiled from source, since binaries shipped with standard
Linux and Unix distributions do not contain relocation
information. Note that our installer outputs nonrelocatable
statically linked binaries, since our policies include the
absolute locations of all system calls.

System call checking has been implemented in Linux by
adding 248 lines of code to the kernel’s software trap
handler, and including a cryptographic library of about
3,000 lines of code for MAC functionality [13]. The software

222 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2006

trap handler is responsible for identifying the system call
number and arguments, invoking the appropriate system
call handler, and returning the result to the calling
application. We modified the handler to verify the call
MAC and perform the other checks required to ensure that
the system call satisfies the required policy. We have not yet
implemented system call checking in OpenBSD.

As an initial test of the effectiveness of authenticated
system calls against different forms of code injection
attacks, we devised a set of attack experiments. We wrote
a simple program that reads in a file name and invokes the
/bin/ls program on the input. The file name is read into a
stack allocated buffer, which can be overflowed by an
attacker to gain control of the program. We constructed
several attacks that took advantage of the buffer overflow:

. One attack simulated a typical shellcode attack and
tried to invoke the execve system call to start a shell,
/bin/sh; this failed because the new system call was
not authenticated and, hence, did not have a policy
argument or MAC.

. A second attack simulated mimicry attacks by
reusing authenticated system calls obtained from
other applications; this failed because the calls did
not conform to the call graph and call site policies.

. A final attack simulated noncontrol data attacks [6]
and tried to replace the argument “/bin/ls” of the
existing authenticated execve system call with “/
bin/sh.” This failed because the policy protected
string arguments against alteration.

4.2 Policies

As noted in Section 2, an ideal policy for a given application
would permit the system call behaviors needed for normal
operation and no others. If the policy permits system calls
not used by the uncompromised application (unneeded calls),
it leaves open the possibility that such calls could be
exploited by an attacker. On the other hand, if the policy
omits some system calls actually used by the application
(needed calls), it raises the possibility of a false alarm or false
positive that causes the application to be terminated
unnecessarily. False alarms are a significant administrative
headache and barrier to use.

Our approach uses a conservative static analysis to
generate system call policies, which means that they include
all needed calls and thus avoid false alarms. Our policies
might allow unneeded system calls though, because no
static analysis is able to identify the exact set of needed calls
for every program. Note, however, that unneeded calls
might also appear in policies produced by hand or by
training. Hand produced policies can include mistakes, for
example. System calls identified through training are never
unneeded, by definition, but there are still opportunities for
errors; for example, policies might be obtained by training
on one version of an application and operating system, and
used on another. In general, policies generated by training
are not portable between operating systems, or even
between different versions of the same operating system,
and they may need to be adjusted even when only libraries
are updated.

In order to gather some empirical evidence regarding
false alarms, unneeded system calls, and operating system
effects, we ported our policy generator from Linux to
OpenBSD. OpenBSD is a useful test case because it supports
a system call monitor, Systrace, in its default build, and
researchers have published Systrace policies for OpenBSD
applications. The Systrace policies are generated through
training along with hand edits. Below, we refer to policies
generated by our installer as ASC policies.

Table 1 compares the number of distinct system calls
permitted in both ASC and Systrace policies for several
common Unix programs: bison, the GNU Project parser
generator; calc, an arbitrary-precision calculator program;
and screen, a screen manager with terminal emulation. The
first column gives the numbers for the ASC policy
generated on Linux, the second column the ASC policy
generated on OpenBSD, and the third column gives the
numbers for Systrace policies published by the Project
Hairy Eyeball Web site [10]. This rough comparison
illustrates two things:

. There are significant differences in the system calls
needed for the same application running on different
operating systems; this implies that policies for one
operating system cannot simply be used on another.

. ASC policies identify system calls that are not
present in the Systrace policies.

Table 2 examines the policies for bison in more detail.
The table shows system calls that are permitted by the ASC
policy generated on OpenBSD but not by the Systrace
policy, and vice versa. Note that the ASC policy includes
many system calls that are not present in the Systrace
policy. We believe that most of these calls are in fact
needed, and we have verified some of them by hand using a
system call tracer on actual runs of applications. This means
that the Systrace policy can cause false alarms.

Conversely, there are a few system calls permitted by the
Systrace policies that are not allowed in the ASC policy.
They break down as follows:

. mmap. The mmap system call is implemented on
OpenBSD by invoking __syscall, a generic indirect
system call function. The ASC policy correctly
constrains the arguments of __syscall so that only
mmap can be invoked, however. With Systrace, this
indirection is hidden from users since its policy does
not explicitly allow __syscall.

. close. The call of close is not identified by PLTO due
to an unusual implementation on OpenBSD that

RAJAGOPALAN ET AL.: SYSTEM CALL MONITORING USING AUTHENTICATED SYSTEM CALLS 223

TABLE 1
Number of System Calls in Policies

PLTO currently cannot disassemble. However, PLTO

always reports when it cannot completely disas-
semble a binary, so that the administrator would
always be aware of such a problem. To date, we have
not encountered similar difficulties on Linux, PLTO’s
native platform.

. mkdir, readlink, rmdir, unlink. The Systrace system
uses two generic names, fsread and fswrite, to
specify sets of system calls; fsread denotes read-
related system calls and fswrite denotes write-
related calls. The fact that mkdir, etc., are not in
the ASC policy indicates that they are unneeded
system calls, but their execution would be allowed
with Systrace since its policy includes fsread and
fswrite.

Next, we examine the degree to which each authenti-

cated system call is protected from alteration by its MAC. In

our current prototype, the system call site and call number

are always protected by the MAC, as are those arguments

whose values can be determined by static analysis. It is, of

course, impossible to determine all argument values using

such techniques; for example, the value may be read as a

user input, generated as a result of a system call, or may be

unknown because of pointer aliasing. In practice, however,

static analysis can determine enough values to be useful

[33] and it can provide a partial policy template that can

then be extended by the security administrator using
dynamic profiling and application knowledge.

Table 3 provides the results of generating ASC policies
for four programs: the three from above and tar, the Unix
archiving program. The sites column indicates the number
of separate system call locations in the program, calls
indicates the number of different system calls, and args
gives the total number of arguments (not including the
system call number) from all the call sites. The o/p column
gives the number of system call arguments that are output-
only arguments, that is, the argument is an address of a
structure where the kernel stores the result of the call. The
auth column lists the number of arguments that could be
determined by the static analysis done by the installer and
that could be authenticated by the basic approach. These
results indicated that 30-40 percent of the arguments can be
protected based on static analysis and the basic approach.

In addition to these arguments, there are many others
that might be protected by using extensions such as those
described in Section 5. Table 3 includes statistics for two of
these as well: arguments where the value can be determined
using static analysis but each argument may have two or
more values (mv), and arguments that are file descriptors
that were returned previously from system calls such as
open or socket (fds).

4.3 Performance

This section measures the performance overhead intro-
duced by the system call checking mechanism. We begin
with a description of results from microbenchmarks that
measure the impact on individual system calls, and then
measure the effect on the overall execution time for a
number of programs.

Table 4 presents the overheads introduced by these
techniques on a per-system-call basis. These results were
obtained by executing each system call 10,000 times using a
loop, and measuring the total number of CPU cycles using
the Pentium processor’s rdtsc instruction, which reads a
64-bit hardware cycle counter. The last two rows indicate
the overhead of the measurement process itself. All of these
experiments measured the overhead of authenticated calls
without control flow policies. Each experiment was re-
peated 12 times; the highest and lowest readings were
discarded, and the average of the remaining 10 readings is
used in the table. Column 2 gives the number of cycles
required to execute an unmodified system call on an
unmodified kernel, while columns 3 and 4 show the effect
of authenticated system calls. The variance was observed to
be low.

224 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2006

TABLE 2
Comparison of Policies for Bison

TABLE 3
Argument Coverage

The results indicate a noticeable cost for the checking
mechanism, about 4,000 cycles for each call. As might be
expected, however, on a percentage basis, the overhead is
much more significant for simple system calls such as
getpid and gettimeofday than for more complex calls like
write, where the costs associated with buffering and
memory accesses dominate.

To measure the effect of these techniques on the overall
performance of applications, we compared the running
times of nine programs and their protected counterparts
(Table 5). These programs can be classified as either CPU or
system call intensive, as shown in the table; the CPU-
intensive programs are from the SPECint-2000 benchmark
suite, while the system call intensive programs are a
collection of common applications that make a large
number of system calls. The programs were compiled using
gcc 3.2.2 into statically linked relocatables that were then
processed using our binary rewriting system, PLTO. Two
types of executables were created: unauthenticated binaries

corresponding to the unmodified program and authenticated

binaries that use authenticated system calls with the full

complement of policies, including control flow policies. We

use unauthenticated binaries generated by PLTO rather than

simply gcc as the baseline, since PLTO itself applies certain

optimizations such as dead code elimination, basic block

layout, and instruction scheduling. As a result, applying

these optimizations in both cases gives the most accurate

representation of the actual cost of an authenticated call.

The cost of transforming the programs including PLTO

optimizations ranged from 3.49 seconds for vpr to 86.17 sec-

onds for gcc.
Our experiment consisted of measuring the time taken

for each program to execute on a fixed set of inputs. The

time utility was used to measure the time taken by each

program, with the total computed as the sum of the user

and system time. Each experiment was repeated four times

and the average is used in the table. The results, reported in

Table 6, indicate a generally modest overhead ranging from

0.73 percent to 7.92 percent.
Our final experiment studied the effect of the authentica-

tion mechanism on a multiprogram benchmark. This

benchmark is similar to the Andrew Benchmark and

consists of a series of tasks that perform routine operations

such as file creation, directory creation, file compression,

file archival, permission checking, moving files, deleting

files, and sorting the content of files. Each iteration of the

benchmark results in the invocation of about 12,000 system

calls. Authenticated versions of several general purpose

tools such as gzip, gunzip, rm, chdir, mv, chmod, tar, cat,

and cp were used to perform the tasks. The execution time

of the benchmark using original binaries was 259.66 seconds

(with standard deviation of 1.24), while the execution time

for authenticated binaries was 262.14 seconds (standard

deviation of 2.12), an increase of only 0.96 percent.
It is difficult to compare the overhead of authenticated

system calls with other system call monitors because each

system enforces different policies. Note, however, that the

total overhead of our approach is well below that of other

systems, even though we do policy checking on all system

calls, unlike, for example, Systrace and Ostia [9].

RAJAGOPALAN ET AL.: SYSTEM CALL MONITORING USING AUTHENTICATED SYSTEM CALLS 225

TABLE 4
Effect of Authentication

TABLE 5
Benchmark Suite

5 IMPROVING POLICIES

This section describes techniques for making policies more
expressive to allow, for example, more complete argument
coverage. We have not yet implemented these techniques,
but we anticipate that they will all be relatively straightfor-
ward extensions to the existing system. We also discuss the
issue of file name normalization, and describe a novel attack
that exploits our integration of policies into the system call
and how it can be addressed.

5.1 Argument Patterns

Many system call monitoring systems allow policies that
specify that an argument of a system call should match a
pattern given by a regular expression. This is particularly
useful for temporary files, whose names are often computed
dynamically using library functions like mkstemp. A
typical example of a pattern is “/tmp/*.” Patterns can be
specified by the security administrator or could be partially
automated by using static and dynamic profiling. The
patterns can be stored as authenticated strings. The
associated MAC checking will ensure an attack cannot
modify the patterns or substitute different patterns for a
system call. The pattern addresses can be passed to the
kernel as additional system call arguments, and the policy
descriptor can be extended slightly to allow it to specify that
an argument must match a pattern.

Pattern matching could be implemented by extending
the kernel to perform regular expression matching. How-
ever, our approach tries to minimize kernel modifications.
An alternate approach borrows ideas from program
checking [5] and proof-carrying code [24]. The idea is that
the untrusted application performs the regular expression
matching for the kernel, and presents the kernel with a
“proof” that the argument matches the pattern. The proof
acts as a hint that allows the kernel to easily verify that the
argument does in fact match the pattern.

This is best illustrated by example. Suppose the pattern
to match is “/tmp/{foo,bar}*baz,” and the actual argument

is “/tmp/foofoobaz.” Then, the application could match the
argument to the pattern and produce the “proof” or hint
(0,3). This hint would be passed to the kernel, which would
verify that the argument matches the pattern as follows. The
kernel would scan down the pattern, matching the initial
characters “/tmp/” of the pattern to the argument. It would
then reach the left brace, indicating the choice of either
“foo” or “bar.” The 0 of the hint indicates that the correct
choice is “foo” (a 1 would indicate “bar”). The kernel would
match the “foo” to the argument. Then, in the pattern, the
kernel would reach the * character, indicating a sequence of
any characters. The 3 of the hint indicates that exactly three
characters should be matched, so the kernel skips over the
second “foo.” Then, the kernel matches the “baz” in the
pattern to the argument, succeeding. If the argument does
not match the pattern or the hint is incorrect, the check will
fail. The benefit of this approach is that most of the work is
done by the application, and the kernel only needs to do a
simple linear scan of the pattern and hint. This minimizes
the necessary additions to the kernel.

The same idea can be used to simplify the checking of
control flow policies. For example, we could force the
application to calculate the predecessor of the node from the
list of possibilities, and pass this in to the kernel to verify.

5.2 Metapolicies and Policy Templates

An ASC metapolicy is a specification that dictates how strict
a policy is required for each system call. In particular, for
each system call, the metapolicy indicates whether the call
site must be specified in the policy and which arguments of
the system call must be constrained. Compared with our
basic approach, metapolicies focus on what must be
protected for a system call rather than what can be protected
automatically based on static analysis. Metapolicies would
typically be derived from the threat level of different system
calls [3] and local administrative policies.

The metapolicy is given as input to the installer along
with the original program (Fig. 4). If the policy generator
cannot determine all the argument values required by the
metapolicy based on static analysis, it generates a policy
template with spaces for the additional required arguments.
An administrator can then hand-specify a value or a pattern
for an argument based on application knowledge or
dynamic profiling. The result of this is the complete ASC
policy, which is used during the rewriting phase by the
installer.

Metapolicies also play a role in extending authenticated
calls to handle dynamic libraries. With dynamic libraries,
system call sites for calls within the library are not known

226 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2006

TABLE 6
Performance Overhead

Fig. 4. Metapolicies and policy templates.

until the library is loaded at runtime. This means that our
basic approach cannot protect the call site from alteration
using a MAC, as is done with statically linked binaries. In
addition, arguments used by system calls in dynamic
libraries are often passed as arguments to library functions,
meaning that their values cannot be determined by static
analysis.

Dynamic libraries are processed based on the security
requirements stated in the metapolicy as follows: The
dynamic libraries on a machine are installed first before
the application programs. During this process, if a system
call in a dynamic library function cannot satisfy the
metapolicy—that is, static analysis cannot generate a
complete policy—the specific function is removed from
the dynamic library and set aside for static linking with
application programs that require the function. Once this
has been done for all system calls in the library, the
functions that remain have their system calls transformed
into authenticated calls in the same manner as before.
Functions in this new protected dynamic library can then be
loaded at runtime. Note that since a dynamic library is
shared by multiple applications on the machine but a single
metapolicy is used for the installation of each dynamic
library, this metapolicy must be as strict as the metapolicies
of the applications that use the library.

5.3 Capability Tracking

Another useful feature for policies is the ability to specify
that an argument to a system call be based on arguments or
return values of previous system calls. An example would
be a policy for a read system call that requires that the file
descriptor argument be a value returned by a previous open
system call [30]. We call policies of this sort capability
tracking policies, since such arguments are being used in a
manner analogous to capabilities. We illustrate how the
basic authenticated system call approach can be extended to
support this feature using the example of file descriptor
tracking.

A naive implementation of file descriptor tracking would
use policy state to store the last file descriptor returned by
each call to open. The policy for each read system call
would specify that the file descriptor should match the file
descriptor for the desired open system call. However, this
ignores the fact that an open system call can be executed
more than once, that more than one file descriptor returned
by the open can be active at once, and that file descriptors
can be reused after they have been closed.

A better approach is to store, for each open system call, a
set of currently active file descriptors. The policy for each
open system then adds a file descriptor to the set, while the
policy for close removes a file descriptor. This involves
fairly complicated data structures, so we would not use the
simple policy state implementation described above, but
rather a more efficient implementation based, for example,
on authenticated dictionaries [22].

5.4 File Name Normalization

A recurring problem for system call monitors has been
dealing with race conditions caused by features such as
symbolic links and relative file names. For example,
consider a policy that allows an application to open a

temporary file, /tmp/foo. An attacker could try to exploit
this by creating a symbolic link named /tmp/foo that
points to /etc/passwd, and then overwriting the password
file by opening and writing /tmp/foo.

To avoid this, system call monitors often use the
convention that a file name in a policy must refer to the
normalized file name, that is, the name of the file after all
symbolic links have been followed. While doing normal-
ization correctly can be complex, strategies developed
elsewhere for performing this step in the kernel during
system call checking [8] apply to our approach. In addition,
we anticipate that it is possible to move some of the
processing into the untrusted application using techniques
similar to those described above in Section 3 for policy state.

5.5 Novel Attacks and Countermeasures

Since system call policies are compiled into the applications
in our approach, it fundamentally changes the vulnerabil-
ities of the system call monitoring system itself. In most
systems, system call policies are specified in a file that is
loaded by the SCM when the machine is started. At
runtime, when an application issues a system call, the
SCM determines the applicable policy by determining the
name of the application issuing this system call (e.g., /usr/
bin/login) and mapping this to the applicable policy
specified in the policy file. Thus, these systems can be
compromised by modifying the policy files or by replacing
legitimate programs with corrupt programs whose behavior
matches the original program’s system call policy.

Since our approach permanently couples the applica-
tions and their policies, the above attacks are not possible in
our system. However, our approach is, in principle,
vulnerable to an attack that takes advantage of this fixed
association. Specifically, such an attack examines multiple
application binaries on the system and constructs a new
application composed of authenticated system calls from
these applications. We call this a Frankenstein attack.

A minor extension to the control flow policy implemen-
tation can prevent Frankenstein attacks. Recall that the
control flow policy requires an application to execute
system calls in an order consistent with its static call graph.
If we ensure that basic block identifiers are unique across all
programs on the same machine, the predecessor set
specified in a system call policy would only match basic
blocks from the same application. Specifically, a Franken-
stein program would be forced into executing only the
system calls of a single application, namely, the application
that supplies the first authenticated system call executed by
the Frankenstein program. Unique basic block identifiers
can be generated, for example, by having the installer
generate a short program identifier that is included as a part
of each basic block identifier in the program. Note that, if
actual call sites were used to specify predecessor sets, such
a modification would not be possible.

6 CONCLUSIONS

Attacks that attempt to compromise a computer system
using the system call interface are an important threat.
Monitoring system calls and disallowing those that do not
conform to a program’s security policy is an effective

RAJAGOPALAN ET AL.: SYSTEM CALL MONITORING USING AUTHENTICATED SYSTEM CALLS 227

mechanisms for stopping a large class of such attacks.
Essentially, a system call monitor can convert a potentially
successful attack into a fail-stop failure [26] of the
compromised process.

In this paper, we presented a novel approach to
implementing system call monitoring based on authenti-
cated system calls. With this approach, the policy is
encoded into the application executable using a binary
rewriting system, and the operating system kernel is only
required to perform simple computations to verify that the
actual system call satisfies the policy. This approach has
been implemented using only small modifications to the
kernel, without the need for heavyweight kernel data
structures or the use of a user-space policy daemon at
runtime. We also presented an automated approach for
generating security policies based on static analysis, some-
thing that can be extended using other techniques if
necessary.

We evaluated the approach on Linux and, for policy
generation, on OpenBSD. In doing so, we provided
measures of the effectiveness of policy generation and
quantified the modest runtime impact of using authenti-
cated system calls over unprotected ones. We also pre-
sented a number of extensions to the basic approach that
can increase its effectiveness by improving the expressive-
ness of policies.

ACKNOWLEDGMENTS

The authors wish to thank S. Debray who provided
valuable insights on the technical issues in this paper. They
also thank the referees for their comments, which signifi-
cantly improved both the contents and the presentation.
This work was supported in part by the US National Science
Foundation under grants EIA–0080123, CCR–0113633, and
CNS–0410918.

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques,
and Tools. Addison-Wesley Publishing Company, 1986.

[2] J. Anderson, “Computer Security Technology Planning Study,”
Technical Report ESD-TR-73-51, vol. II, US Air Force, Command
and Management Systems, Bedford, Mass., Oct. 1972.

[3] M. Bernaschi, E. Gabrielli, and L. Mancini, “Operating System
Enhancements to Prevent the Misuse of System Calls,” Proc. ACM
Conf. Computer and Comm. Security, pp. 174-183, 2000.

[4] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor,
“Checking the Correctness of Memories,” Algorithmica, vol. 12,
nos. 2-3, pp. 225-244, Aug. 1994.

[5] M. Blum and S. Kannan, “Designing Programs that Check Their
Work,” J. ACM, vol. 42, no. 1, pp. 269-291, Jan. 1995.

[6] S. Chen, J. Xu, E.C. Sezer, P. Gauriar, and R. Iyer, “Non-Control-
Data Attacks Are Realistic Threats,” Proc. USENIX Security Symp.,
Aug. 2005.

[7] U. Elingsson and F. Schneider, “SASI Enforcement of Security
Policies: A Retrospective,” Proc. New Security Paradigms Workshop,
pp. 87-95, Sept. 1999.

[8] T. Garfinkel, “Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools,” Proc. Network and Distributed
Systems Security Symp., Feb. 2003.

[9] T. Garfinkel, B. Pfaff, and M. Rosenblum, “Ostia: A Delegating
Architecture for Secure System Call Interposition,” Proc. Network
and Distributed Systems Security Symp., Feb. 2004.

[10] J. Geovedi, J. Nazario, N. Provos, and D. Song, “Project Hairy
Eyeball,” http://blafasel.org/~floh/he/, 2005.

[11] J.T. Giffin, S. Jha, and B.P. Miller, “Detecting Manipulated Remote
Call Streams,” Proc. 11th USENIX Security Symp., Aug. 2002.

[12] J.T. Giffin, S. Jha, and B.P. Miller, “Efficient Context-Sensitive
Intrusion Detection,” Proc. Network and Distributed System Security
Symp., Feb. 2004.

[13] B. Gladman AES Combined Encryption/Authentication Library,
http://fp.gladman.plus.com/AES/index.htm, 2006.

[14] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer, “A Secure
Environment for Untrusted Helper Applications,” Proc. Sixth
Usenix Security Symp., 1996.

[15] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection
Using Sequences of System Calls,” J. Computer Security, vol. 6,
no. 3, pp. 151-180, 1998.

[16] T. Iwata and K. Kurosawa OMAC: One-Key CBC MAC, 2002.
[17] K. Jain and R. Sekar, “User-Level Infrastructure for System Call

Interposition: A Platform for Intrusion Detection and Confine-
ment,” Proc. Network and Distributed Systems Security Symp., pp. 19-
34, Feb. 2000.

[18] M. Jones, “Interposition Agents: Transparently Interposing User
Code at the System Interface,” Proc. 14th ACM Symp. Operating
Systems Principles (SOSP), pp. 80-93, Dec. 1993.

[19] E. Krell and B. Krishnamurthy, “COLA: Customized Overlaying,”
Proc. Winter 1992 Usenix Conf., pp. 3-7, Jan. 1992.

[20] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the Detection of
Anomalous System Call Arguments,” Proc. Eighth European Symp.
Research in Computer Security (ESORICS ’03), pp. 326-343, 2003.

[21] C.M. Linn, M. Rajagopalan, S. Baker, C. Collberg, and J.H.
Hartman, “Protecting against Unexpected System Calls,” Proc.
Usenix Security Symp., pp. 239-254, Aug. 2005.

[22] M. Naor and K. Nissim, “Certificate Revocation and Certificate
Update,” Proc. Seventh USENIX Security Symp., pp. 217-228, Jan.
1998.

[23] G. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“CCured: Type-Safe Retrofitting of Legacy Software,” ACM Trans.
Programming Languages and Systems, vol. 27, no. 3, pp. 477-526,
May 2005.

[24] G. Necula and P. Lee, “Safe Kernel Extensions without Run-Time
Checking,” Proc. Operating System Design and Implementation
(OSDI), pp. 229-243, Oct. 1996.

[25] N. Provos, “Improving Host Security with System Call Policies,”
Proc. 12th USENIX Security Symp., pp. 257-272, Aug. 2003.

[26] R. Schlichting and F. Schneider, “Fail-Stop Processors: An
Approach to Designing Fault Tolerant Computing Systems,”
ACM Trans. Computer Systems, vol. 1, no. 3, pp. 222-238, Aug. 1983.

[27] B. Schwarz, S. Debray, and G. Andrews, “Plto: A Link-Time
Optimizer for the Intel IA-32 Architecture,” Proc. 2001 Workshop
Binary Translation (WBT ’01), 2001.

[28] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A Fast
Automaton-Based Method for Detecting Anomalous Program
Behaviors,” Proc. IEEE Symp. Security and Privacy, pp. 144-155,
2001.

[29] R. Sekar and P. Uppuluri, “Synthesizing Fast Intrusion Preven-
tion/Detection Systems from High-Level Specifications,” Proc.
Eighth USENIX Security Symp., pp. 63-78, 1999.

[30] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D.
DuVarney, “Model-Carrying Code: A Practical Approach for Safe
Execution of Untrusted Applications,” Operating Systems Rev.,
vol. 37, no. 5, pp. 15-28, Dec. 2003.

[31] K.M.C. Tan and R.A. Maxion, ““Why 6? Defining the Operational
Limits of Stide, an Anomaly-Based Intrusion Detector,” Proc. 2002
IEEE Symp. Security and Privacy, p. 188, 2002.

[32] V. Venkatakrishnan, R. Peri, and R. Sekar, “Empowering Mobile
Code Using Expressive Security Policies,” Proc. 2002 Workshop
New Security Paradigms, pp. 61-68, 2002.

[33] D. Wagner and D. Dean, “Intrusion Detection via Static Analysis,”
Proc. IEEE Symp. Security and Privacy, pp. 156-169, 2001.

[34] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting Intru-
sions Using System Calls: Alternative Data Models,” Proc. IEEE
Symp. Security and Privacy, pp. 133-145, 1999.

[35] A. Wespi, M. Dacier, and H. Debar, “Intrusion Detection Using
Variable-Length Audit Trail Patterns,” RAID ’00: Proc. Third Int’l
Workshop Recent Advances in Intrusion Detection, pp. 110-129, 2000.

228 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2006

Mohan Rajagopalan received the BE degree
from Mumbai University and the MS and PhD
degrees from the University of Arizona. He is a
research scientist in the Programming Systems
Lab at Intel Corp. His research explores topics in
both programming language and operating
system design and implementation, with the
goal of improving overall system characteristics
such as performance, dependability, and secur-
ity. He was a recipient of the 2005 IEEE/IFIP

William C. Carter award for his work on Authenticated System Calls. He
is a member of the IEEE.

Matti A. Hiltunen received the MS degree in
computer science from the University of Helsinki
and the PhD degree in computer science from
the University of Arizona. He is a researcher in
the Dependable Distributed Computing and
Communication Department at AT&T Labs-
Research in Florham Park, New Jersey. He is
a member of the ACM and the IEEE Computer
Society. His research interests include depend-
able distributed systems and networks, grid

computing, and pervasive computing.

Trevor Jim received the BSE degree from
Princeton University and the MS and PhD
degrees from the Massachusetts Institute of
Technology. He is a researcher in the Depend-
able Distributed Computing and Communication
Department at AT&T Labs. He works in the
areas of computer security and programming
languages.

Richard D. Schlichting received the BA degree
in mathematics and history from the College of
William and Mary, and the MS and PhD degrees
in computer science from Cornell University. He
is currently director of software systems re-
search at AT&T Labs-Research in Florham
Park, New Jersey. He was on the faculty at
the University of Arizona from 1982-2000, and
spent sabbaticals in Japan in 1990 at Tokyo
Institute of Technology and in 1996-97 at Hitachi

Central Research Lab. Dr. Schlichting is an ACM Fellow and an IEEE
Fellow, and is on the editorial board of the IEEE Transactions on
Software Engineering. He is also the current chair of the IFIP Working
Group 10.4 on dependable computing and fault tolerance, and has been
active in the IEEE Computer Society Technical Committee on fault-
tolerant computing, serving as its chair from 1998-1999. His research
interests include distributed systems, highly dependable computing, and
networks.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

RAJAGOPALAN ET AL.: SYSTEM CALL MONITORING USING AUTHENTICATED SYSTEM CALLS 229

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

