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ABSTRACT
Yakker is a parser generator that supports semantic actions,
lexical binding of semantic values, and speculative parsing
techniques such as backtracking and context-free lookahead.
To avoid executing semantic actions in speculative parses
that will eventually be discarded, we divide parsing into two
conceptually independent phases. In the first (early) phase,
the parser explores multiple possible parse trees without ex-
ecuting semantic actions. The second (late) phase executes
the delayed semantic actions once the first phase has deter-
mined they are necessary. Execution of the two phases can
be overlapped.

We structure the early phase as a transducer which maps
the input language to an output language of labels. A string
in the output language is a history of the semantic actions
that would have been executed in a parse of the input. The
late phase is implemented as a deterministic, recursive de-
scent parse of the history.

We formalize delayed semantic actions and discuss a num-
ber of practical issues involved in implementing them in
Yakker, including our support for regular right part gram-
mars and dependent parsing, the design of the data struc-
tures that support histories, and memory management tech-
niques critical for efficient implementation.

Categories and Subject Descriptors
F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems—Grammar Types,
Parsing; D.3.1 [Programming languages]: Formal Defi-
nitions and Theory—Syntax; D.3.4 [Programming lan-
guages]: Processors—Parsing

1. INTRODUCTION
Yakker is a parser generator that supports dependent pars-

ing, in which semantic actions can be executed in the middle
of a parse, and can influence the rest of the parse [1, 2]. For
example, a parser may need to calculate the value of a length
field before parsing the remainder of a record.
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Some semantic actions, however, are not used to influence
parsing itself. Executing these actions during parsing can be
undesireable—they could introduce pointless overhead and
extraneous side effects in parsers that support ambiguity
or use backtracking or other speculative parsing techniques.
Therefore, Yakker also supports semantic actions whose ex-
ecution can be delayed until after it has determined a final
parse tree.

Yakker parses in two conceptually independent phases.
The first, early phase does all the work needed to determine
a final parse tree, including executing any semantic actions
necessary for dependent parsing, and resolving any ambigu-
ities as required by the the input language. We structure
the early phase as a transducer whose output is a language
of labels that record a history that gives the sequence of
delayed semantic actions that should be executed for the
chosen parse. This sequence is replayed by the second, late
phase to execute the delayed semantic actions. The late
phase is structured as a very simple parser for the output
language of the early phase. In practice, the execution of
the early and late phases can overlap.

Our two-phase strategy has several advantages.
First, the implementation details of the early phase are

irrelevant to the late phase, so long as the early phase trans-
duces each input to the correct output. This is useful be-
cause our early phase is complicated: it supports arbitrary
context-free languages, dependent parsing, and several pars-
ing back ends (including Earley, GLR and backtracking) [1].
We have also reimplemented it several times.

Second, the output language of the early phase can be
chosen to achieve technical goals. For example, we have
chosen to make our output language a deterministic context-
free language, so that our late phase can be a simple, fast,
recursive-descent parser; additionally, this lets us easily sup-
port lexically-bound semantic values in regular right part
grammars. We will see that other choices of output lan-
guage can reduce the time and space overhead of our early
phase.

Contributions.
This paper is a practical guide to implementing our two-

phase technique. We use a fragment of Yakker that is suf-
ficient to illustrate our treatment of delayed semantic ac-
tions, while avoiding most of the complexities of dependent
parsing. Dependent parsing is treated in more detail in our
previous work [1, 2], and our complete implementation is
available online.

We show how to construct an early-phase transducer by a



grammar transformation from a user-level language, GulL,
to an intermediate-level language, Gil. GulL includes de-
layed semantic actions, lexical binding for semantic values,
and regular right sides. Gil is a simpler language that can
be easily implemented on top of a variety of parsing algo-
rithms, as we have shown previously [1]. Semantic actions
in Gil are not delayed, and we use them to build a partial
parse forest that encodes all of the histories for an input. An
output (a single history) is read from the forest by a simple
postfix traversal.

The construction of the late-phase replay parser depends
almost entirely on the choice of the early-phase output lan-
guage. We construct the output language through a notion
of relevance that essentially lets us record only those parts
of a full parse forest that are necessary for later replay. For
scannerless grammars, relevance has the added advantage
that it implicitly distinguishes lexical nonterminals, which
have few or no associated semantic actions, from the rest of
the grammar. Finally, we have chosen to use a deterministic
context-free output language, so that our late-phase parser
can be a simple recursive-descent parser.

2. GRAMMAR LANGUAGES
We now define three different languages that we use in our

implementation: GulL; labeled GulL; and Gil.
GulL is our user-level language for defining context-free

grammars with delayed semantic actions.1 An example GulL
grammar can be found at the beginning of Section 3; for-
mally, its syntax is defined as follows:

G = (A1(x1) = R1), . . .

R = ε | c | (R | R) | R R | (*R)

| {e} | A(e) | (x=R R) | *x=eR | pos

A grammar is a sequence of definitions for nonterminals in
terms of right sides. We use G, A, and R to range over
grammars, nonterminals, and right sides, respectively. Right
sides are based on regular expressions, including the empty
string ε, terminals c, alternation, and Kleene closure (writ-
ten as a prefix ‘*’). (Delayed) semantic actions are written
{e}, where e is an expression taken from some expression lan-
guage. We assume that the expression language is a subset of
some general-purpose programming language, which we call
the target language. Nonterminals are defined with formal
parameters ranging over semantic values, and are applied to
target-language expressions. The right side (x=R1 R2) is
the concatenation of R1 and R2, where x is bound to the se-
mantic value of R1 in the scope R2. We write (R1 R2) for a
concatenation which does not require binding. We include a
folding version (*x=eR1) of Kleene closure, which starts with
an initial expression e, and then (implicitly) folds over the
input to produce a final value. The pos construct evaluates
to the current input position without consuming any input.
It is most useful for scannerless grammars. Tokenized gram-
mars, which are also compatible with GulL, can usually get
positions from tokens.

Our techniques are not specific to any particular target
language, but for the sake of concreteness we will assume
some variant of the untyped, call-by-value lambda calculus.
Note that the target language may have its own binding

1We use the subscript L (for ‘late’) to distinguish GulL from
the language Gul of [1].

forms, and there is no requirement that target expressions
must use only GulL-bound variables—expressions may ref-
erence library functions or globals.

In our examples, we will write concrete terminals in quotes,
for example, ‘b’ for the ASCII character lowercase b. We
assume that the target language has a distinguished unit
value, written (), as well as booleans. If the parameter of a
nonterminal A is not used in its right side, we omit it. We
may omit the parentheses in (*R), (R1 R2), (R1 | R2), and
(x=R1 R2) when this does not cause confusion.

Labeled GulL is an extension of GulL in which right
sides can be annotated with labels `:

R = . . . | `R | R`

Concrete labels are written 1, 2, . . . . A labeled GulL gram-
mar defines a transducer from terminals to labels and in-
put positions: each label indicates an output (matching the
empty string), and pos outputs the current input position.
For example, the labeled GulL right side

*(‘a’1) *(‘b’) pos

transduces the input aaabbbb into the output 1 1 1 7.

Gil is an intermediate-level language of grammars that
we use to implement early-phase transducers. Its semantic
actions are executed in the middle of (during) parsing, in
contrast to GulL’s delayed semantic actions; we will record
histories using Gil’s semantic actions. Gil’s syntax is defined
by the following rules:

g = (A1 = r1), . . .

r = ε | c | (r | r) | (*r) | (r r) | {f} | A(farg, fret)

Gil, like GulL, is based on regular expressions over terminals
and nonterminals. To distinguish between GulL and Gil we
use g, r, and f to range over Gil grammars, right sides, and
target language expressions, instead of GulL’s G, R, and e.

Gil lacks the binding forms of GulL: nonterminals are de-
fined without a formal parameter, and there is no binding
concatenation. Instead, Gil right sides are value transform-
ers: they map an implicit semantic value input to an output.
The full semantics of Gil are given in our earlier paper [1].
For convenience, we present a few of the key rules here:2

f(i)(v) = v1

〈v, i〉 {f}−−→ 〈v1, i〉

〈v, i〉 r1−−→ 〈v1, i1〉
〈v1, i1〉 r2−−→ 〈v2, i2〉
〈v, i〉 (r1r2)−−−−→ 〈v2, i2〉

farg(i)(v) = v1, (A = r) ∈ g
〈v1, i〉 r−→ 〈v2, i2〉
fret(v)(v2) = v3

〈v, i〉 A(farg,fret)−−−−−−−−→ 〈v3, i2〉

Semantic actions are the base value transformers, and our
rule for concatenation shows that Gil threads values from
left to right across parses. An instance of a nonterminal
in a right side has two arguments: the first is used to cal-
culate the initial semantic value for the nonterminal’s right
side; and the second is used to combine the output of the
nonterminal’s right side with the value from before the non-
terminal’s invocation.

2We have slightly modified the rules for semantic actions and
nonterminals to provide the current position as an argument
to f and farg, respectively.



3. DELAYED SEMANTIC ACTIONS
We will explain our technique using the following example.

It is a GulL grammar that calculates sums, e.g., on input
12+345, a parser for the grammar calculates 357:

start = sum(0)

sum(x) = y=number {x+ y}
| y=number ‘+’ sum(x+ y)

number = p1=pos digit *digit p2=pos {atoi(sub(p1, p2))}
digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

The nonterminal sum(x) does most of the work. It re-
cursively parses a sum, calculates its value, and returns the
value plus x. The start nonterminal initializes the parse as
sum(0). The rule for number parses a sequence of digits, re-
membering the input position before and after the sequence,
and then uses library functions sub (to extract the sequence
from the full input) and atoi (to convert the sequence to an
integer semantic value).

If the parse of a sum occurs in the context of a larger,
speculative parse, we would clearly like to delay the action
{atoi(sub(p1, p2))} in the right side of number until after
we have determined that it is necessary, because it is fairly
expensive. However, the positions bound to p1 and p2 obvi-
ously become available during parsing. We therefore would
like to calculate p1 and p2 during parsing, store them in
the history, and delay all of the other semantic actions until
after parsing.

Figures 1–4 show how we achieve this. We first anno-
tate the grammar with labels (written 1, 2, . . . ) before
each semantically-significant construct (pos, bindings, ac-
tions, parameters, and, recursively, nonterminals with la-
bels). A labeled version of the original grammar is shown
in Figure 1. Recall that in labeled GulL, the labels are out-
puts (matching ε), and pos outputs the input position (in
addition to returning the position as a semantic value, as
in unlabeled GulL). We call the sequence of labels and po-
sitions output during a single parse of an input a history,
and, as we will see, a history records all of the information
necessary to execute the semantic actions in the late stage.

On input 12+345, a transducer for the grammar in Fig-
ure 1 calculates 357 and outputs the history shown in Fig-
ure 2. The essence of our technique is to separate this com-
bined computation into an early phase that only outputs the
history, and an independent late phase that consumes the
history and calculates the result, 357.

The grammar in Figure 3 implements the early phase. It
is a labeled GulL grammar derived from the grammar in Fig-
ure 1 by dropping all semantic computations: bindings and
actions are replaced by ε, and parameters are omitted. Since
we have started with a grammar whose semantic actions do
not influence what is parsed, this results in a grammar with
exactly the same parses, and hence outputs, as that of Fig-
ure 1. Unlike that grammar, the early phase grammar does
not calculate the sum.

The grammar in Figure 4 implements the late phase. It
is an unlabeled GulL grammar that consumes histories pro-
duced by the grammar in Figure 3 and calculates the desired
sum. It is derived from the grammar in Figure 1 by omit-
ting all of the original terminals, and by transforming labels
into new terminals (notice that this lets us completely omit
the nonterminal digit, whose original definition was sim-
ply a set of terminals with no semantic actions). In addi-
tion, pos is replaced by a special nonterminal, posV , which

start = 1sum(0)

sum(x) = 2y= 3number 4{x+ y}
| 5y= 6number ‘+’ 7sum(x+ y)

number = 8p1= 9pos digit (*digit) 10p2= 11pos
12{atoi(sub(p1, p2))}

digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

Figure 1: The original grammar after labeling.

1 5 6 8 9 0 10 11 2 12 7 2 3 8 9 3 10 11 6 12 4

Figure 2: The output sequence of labels and posi-
tions for input 12+345.

start = 1sum

sum = 2ε 3number 4ε

| 5ε 6number ‘+’ 7sum

number = 8ε 9pos digit (*digit) 10ε 11pos 12ε

digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

Figure 3: The early-phase grammar.

start = 1 sum(0)

sum(x) = 2 y= (3 number) 4 {x+ y}
| 5 y= (6 number) 7 sum(x+ y)

number = 8 p1= (9 posV ) 10 p2= (11 posV ) 12

{atoi(sub(p1, p2))}

Figure 4: The late-phase grammar.

both matches and returns semantic values of positions (non-
negative integers).

Our construction has the following useful properties:

1. The original grammar is equivalent to the composition
of the early- and late-phase grammars.

2. The early-phase grammar has no semantic actions.

3. The late-phase grammar is deterministic.

(1) is our basic correctness property and it also implies that
we can take advantage of standard techniques for grammar
composition, e.g., we can overlap execution of the early- and
late-phase grammars. (2) shows that we have successfully
separated parsing from semantic actions, and (3) implies
that it will be easy to implement the semantic actions, even
though they involve lexical bindings and regular right sides.

Implementing the early-phase grammar. There is a
wide literature on both regular and context-free transducers.
Our needs are a bit unusual, however: we need context-
sensitive transducers, to support pos and dependent parsing
as described in [1, 2]. Therefore we will go into some detail.

Transducers in general can be ambiguous, mapping a sin-
gle input to many outputs. To avoid exponential space com-
plexity, our transducers encode outputs using a data struc-
ture much like Tomita’s shared packed parse forests [11].



number: 8 9 0 10 11 2 12 8 9 3 10 11 6 12

sum: 2 3 21 4

sum: 5 6 20 7 22

start: 1 23

Figure 5: Forest constructed for a parse of 12+345, with root, 23, at lower right. A postfix traversal that
omits the merge labels 20–23 gives the history of Figure 2.

The forest for our example input is given in Figure 5. The
input has only a single parse, so this particular forest is
just a tree, written bottom-up: label sequences in rows in-
dicate a parse of a nonterminal, and upwards edges indicate
where another nonterminal was parsed. Binary nodes are
used to “merge” the parse of one nonterminal into another;
we choose the labels 20–23 on these merge nodes to be dis-
tinct from the labels used in Figure 1. For example, the
sequence 2 ← 3 ← 21 ← 4 in the second row corresponds
to a parse of sum, and the arrow from 21 to the top row
indicates that a parse of number occurred between labels
3 and 4. A simple postfix traversal of the tree in Figure 5,
omitting merge labels, produces the history in Figure 2.

To build forests, we transform the early-phase grammar
of Figure 3 into the following Gil grammar:

start = {p(1)} sum(e,m(26))

sum = {p(2)} {p(3)} number(e,m(23)) {p(4)}
| {p(5)} {p(6)} number(e,m(24))

‘+’ {p(10)} sum(e,m(25))

number = {p(8)} {p(9); p(pos())} digit (*digit) {p(10)}
{p(11); p(pos())} {p(12)}

digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

It builds the forest shown in Figure 5 on our example input.
It includes new actions which build forest nodes during the
early phase, using three forest constructors. The empty con-
structor e builds the empty forest; the push constructor p(`)
builds a new forest node with label ` and with the old forest
as its single child; and the merge constructor m(`) is used
after a nonterminal to build a new forest node labeled ` with
two children—the forest before the parse of the nonterminal,
and the forest describing the parses of the nonterminal itself.
The function pos() returns the current input position.

Implementing the late-phase grammar. We have al-
ready noted that the late-phase “replay” grammar is a de-
terministic context-free grammar: by construction, all la-
bels in the grammar are distinct, and, every choice point in
the grammar is preceded by a distinct label. Therefore, it
can be implemented with a straightforward recursive-descent
parser that takes as input the label/position sequence, and
executes the late stage semantic actions. For our example,
we use three recursive parsing functions:

replaystart() = skip(1); replaysum(0)

replaysum(x) =
match next() with

2. let y = (skip(3); replaynumber());
skip(4); x+ y

| 5. let y = (skip(6); replaynumber());
skip(7); replaysum(x+ y)

replaynumber() =
skip(8);
let p1 = (skip(9); next());
skip(10);
let p2 = (skip(11); next());
skip(12); atoi(sub(p1,p2))

The functions use a stateful interface to the label/position
sequence: there is an implicit pointer to the current position
of the sequence, and the function next() returns the element
at that position and advances the pointer. A stateful imple-
mentation is appropriate for replay, because, in this second
stage, the final parse has been decided.

Here skip(`) is short for (match next() with `. ()) . So,

skip(`) asserts that the next element of the input is ` and
advances the input. In fact, we know that the assertion can-
not fail, because we only run the replay parser on output
sequences of the early-phase transducer. The presence of
skip() in our replay functions shows that the outputs of the
early phase are overly-detailed—they encode almost a com-
plete parse tree. This can easily be improved by noting that
all of the labels that are skipped in our replay functions are
in fact unnecessary for replay; we do not have to put them
into forests in the first place, and we do not need to skip()
them in the replay functions. For our example, this means
that only labels 2 and 5 need to be replayed, and only labels
2, 5, and the merge labels 20, 21, 22, and 23 need to be
stored in the forest (the merge labels are never replayed).

Our implementation builds transducers and replay func-
tions using this observation, and it reduces forest space con-
siderably, but we will omit the optimization from our formal
treatment to simplify its presentation. Similarly, we note
that there are still other choices for output languages (e.g.,
we could omit still more labels but remain in LL(1)) but
leave that to future work.

4. IMPLEMENTING FORESTS
The forest datatype represents a set of trees. Here is its

OCaml definition:

type ’a forest = {v:’a; mutable pack:’a tree list}
and ’a tree =
| Zero
| One of ’a forest
| Two of ’a forest * ’a forest

A forest contains one or more trees, all of which have the
same value, v:’a, at their root nodes. We only need trees
whose nodes have zero, one or two children, represented by
the constructors of the tree type. The pack of a forest
enumerates the children for each of the trees represented by
the forest. For example, the forest

{v=1; pack=[Zero; One {v=2;branchings=[Zero]}]}



represents two trees, 1 and 1 → 2. The use of pack thus
allows us to encode multiple trees with the same node value,
and corresponds to Tomita’s“local ambiguity packing.” Note
that pack is a mutable field, so that forests can be con-
structed incrementally.

The forest datastructure, by itself, does not enforce shar-
ing. We ensure sharing by hashconsing forests, rather than
constructing them directly. The hashconsing is hidden be-
neath the interface of a shared packed forest class:

class [’a] spf : (’a forest -> ’a forest) ->
object (’self)

method e : ’a -> ’self
method p : ’a -> ’self
method m : ’a -> ’self -> ’self
method get_value : ’a
method history : ’a history

end

The spf class takes an initializer of type (’a forest ->

’a forest), namely, a memoizer for forests. The spf imple-
mentation uses the memoizer to make sure that all trees with
the same value are represented by the same forest node. We
omit the full details of the spf implementation (it is avail-
able online), noting only that we are careful to use OCaml’s
weak hashtable library to implement the memoizer, so that
memoization itself does not retain history nodes that become
garbage as a result of speculative parsing. The methods e, p
and m correspond to the constructors e, p, and m described
in Section 3.

The spf class is parameterized over the type of value car-
ried by nodes; it is not specific to parsing. We implement a
shared packed parse forest by instantiating the type param-
eter with a value containing the grammar label and left and
right input positions that a node represents. The sppf type
and the types of constructors e, p and m are:

type sppf = (label * pos * pos) spf
val e : pos -> sppf
val p : label -> pos -> sppf -> sppf
val m : label -> pos -> sppf -> sppf -> sppf

Their implementation simply manages construction of ap-
propriate values for each node, delegating the rest of the
work to the corresponding spf methods. The p and m con-
structors use the get_value method to access the left posi-
tion of an argument sppf’s value, for inclusion in the value
of the result.

Every spf object also has a history method that returns
an object that can access the serialized node values of the
spf:

class [’a] history :
object
method next : unit -> ’a

end

A history object just conducts a lazy postfix traversal of
a forest, arbitrarily choosing a branching if it encounters
multiple branchings.3 The history object is the basis of the
function next() described in Section 3.

5. THE GRAMMAR TRANSFORMATIONS
In this section, we formally present the transformation

from a GulL grammar to a Gil grammar that constructs
a history forest during parsing and a replay function that

3Disambiguation of forests can be applied before this point
to avoid such arbitrary choices. Yakker supports a variety
of disambiguation methods, which we will not discuss here.

traverses a history and executes the semantic actions from
the user’s grammar. The transformation occurs in a num-
ber of phases. The initial phases (normalization, labeling
and erasing) closely parallel those used to transform the Gul
language [1]. We discuss those phases briefly and refer the
reader to our previous work for more detail.

At the core of our transformation is the notion of rele-
vance, which defines when nonterminals and right sides are
semantically meaningful.

Definition 1
The relevance of the nonterminals and right sides of a gram-
mar are defined as the least relations satisfying the following
properties:

• A right side is relevant if it includes a target-language
expression or a relevant nonterminal.

• A nonterminal is relevant if its right-side is relevant.

Notice that bindings do not impact relevance, because what
matters for history construction is whether the binding is
used.

Irrelevant right sides and rules only require recognition,
and not reconstruction. They therefore need not be recorded
in the forest and can be ignored by our transformations.
However, the relevance of a right side is not necessarily ap-
parent from its top-level syntax. So, for the purposes of our
formalism, we restrict inputs to grammars which have been
normalized so that their syntax reflects their relevance.

Normalization.
We say that a right side R is normalized if every subterm

R′ of R satisfies the following properties:

• If R′ is (x=R1 R2) then both R1 and R2 are relevant.

• If R′ is (R1 R2) then at least R1 is not relevant.

• If R′ is (R1 | R2) then R1 and R2 share the same
relevance.

• If R′ is (*R1) then R1 is not relevant.

• If R′ is (*x=eR1) then R1 is relevant.

We say that a grammar G is normalized if every right-side
in the grammar has been normalized.

Definition 2 (GulL-to-Gil Transformation)
We say that a normalized GulL grammar G transforms to a
Gil grammar g, written G ⇒ g, iff g is the least grammar
such that the following conditions hold:

• If (A(x) = R) ∈ G and R is irrelevant, then (A = R) ∈
g.

• If (A(x) = R) ∈ G and R is relevant, then (A =
H[[R`]]) ∈ g, and replayA(x) = match next() with

`
(R◦

E)[[R`]]
´
, where R` = L[[R]].

We describe each of the transformations mentioned above in
turn.



L[[R]] = R′ (R is normalized)

If R is not relevant, then L[[R]] = R.

Otherwise, L[[R]] is defined by the following cases. In each
case, ` and `′ denote fresh labels.

L[[pos]] = `pos L[[{e}]] = `{e}

L[[A(e)]] = `A(e)`′

L[[(R1 | R2)]] = (L[[R1]] | L[[R2]])

L[[(R1 R2)]] = (R1 L[[R2]])

L[[(x=R1 R2)]] = `(x=L[[R1]] L[[R2]])

L[[(*x=eR)]] = `(*x=eL[[R]])`′

Figure 6: Labeling right sides

E [[R]] = R′ (R is relevant and normalized)

E [[`pos]] = `pos E [[`{e}]] = `{e}

E [[`A(e)`′ ]] = `A(e)`′

E [[(R1 | R2)]] = (E [[R1]] | E [[R2]])

E [[(R1 R2)]] = E [[R2]]

E [[`(x=R1 R2)]] = `(x=E [[R1]] E [[R2]])

E [[`(*x=eR)`′ ]] = `(*x=eE [[R]])`′

Figure 7: Erasing irrelevant subterms

Labeling L[[·]].
Our first step is to add labels to Gul right sides. Each

label identifies a control-flow point in the right side. These
labels serve to synchronize the construction of replay func-
tions with the insertion of forest constructors. The insertion
of labels considerably simplifies the specification of those
two phases, which otherwise could not be specified indepen-
dently.

We only need to add labels to relevant subterms of a right
side. The labeling transformation is given in Figure 6. We
use underlined integers for labels, and use ` to range over
integers used as labels.

Erasing E [[·]].
The replay function for a Gul right side is constructed

exclusively from relevant subterms of the right side. We can
simplify the definition of replay-function construction if we
first erase all subterms that are not relevant. A suitable
transformation is given in Figure 7. It has the important
property that the resulting right side exactly preserves the
control-flow of the labels of the original right side.

History H[[·]].
The transformationH[[·]], shown in Figure 8, uses the three

H[[R]] = r (R is normalized)

If R is not relevant, then H[[R]] = R. Otherwise, L[[R]] is
defined by the following cases.

H[[`pos]] = {p(`); p(pos())} H[[`{e}]] = {p(`)}

H[[`A(e)`′ ]] = {p(`)} A(e,m(`′))

H[[`(x=R1 R2)]] = {p(`)} H[[R1]] H[[R2]]

H[[`(*x=eR)`′ ]] = {p(`)} *(H[[R]]) {p(`′)}

H[[(R1 | R2)]] = (H[[R1]] | H[[R2]])

H[[(*R)]] = *H[[R]]

H[[(R1 R2)]] = H[[R1]] H[[R2]]

H[[ε]] = ε H[[c]] = c

Figure 8: History-forest construction

R[[R]] = C

R[[`pos]] = `.next() R[[`{e}]] = `.e

R[[`A(e)`′ ]] = `.replayA(e)

R[[`x=R1 R2]] = `.let x = match next() with R[[R1]];
match next() with R[[R2]]

R[[`(*x=eR)`′ ]] = `.let rec g x = match next() with
`′.x | y.g(match y with (R[[R]]));

g(e)
where g and y are fresh variables

R[[(R1 | R2)]] =
`
R[[R1]] | R[[R2]]

´
Figure 9: Replay function

forest constructors described in Sections 3 and 4. The non-
terminal and pos cases are notable. H[[`A(e)`′ ]] shows that
forest construction does not depend upon arguments. The
pos case uses the function pos(), which returns the current
input position.

Notice that H[[`A(e)`′ ]] adds the label `′ to the history,

but R[[`A(e)`′ ]] does not skip the `′. This is because next()
skips over merge labels when doing its postfix traversal of
the forest.

Replay R[[·]].
Finally, we construct replay functions from grammars (af-

ter erasing), as shown in Figure 9. The rules follow the
example discussed in Section 3. The only new case is that
of folding Kleene closure. The replay function for this case
essentially performs a left fold over a subsequence of the his-
tory (ending immediately before `′ rather than at the end
of the history), using the replay code for the body R as the
combining function of the fold.
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Figure 10: Memory consumption for two simple
grammars describing a series of ‘s’ characters. Note
the significant difference in the y-scale of the the two
plots.

6. EVALUATION
We briefly evaluate the memory consumption of Yakker’s

parsers when using histories. Since the main contribution of
histories relates to design, and not performance or memory
size, our goal is simply to confirm that our implementation’s
memory profile conforms to standard asymptotic bounds.

We consider three grammars. The first two accept an arbi-
trary number of ‘s’ characters and print some output. They
are shown in Figure 10, along with plots of their memory
consumption compared to input position for a series of 256
‘s’ characters. The first grammar is deterministic and the
linear growth of its memory profile is, therefore, in line with
our expectations. The second grammar is highly ambiguous
and results in exponentially many parses relative to the in-
put length. The cubic (rather than exponential) nature of
the graph demonstrates the effect of the sharing used in our
forests.

The third grammar is a grammar for OCaml, adapted
from the official lexer and grammar to be scannerless and use
regular right sides. In Figure 11(a), we plot, for each source

file of Yakker, the size of the parse forest representing that
file. The size, shown on the y-axis, is measured in number of
distinct nodes, while the x-axis is the size of the respective
source file. Note that both axes use a logarithmic scale.
The data suggests a linear growth in memory consumption,
which is consistent with the (almost) LR(1) nature of the
OCaml grammar. The three outliers from the otherwise
linear relation all belong to generated files. Those above
the line are denser in code (vs. whitespace) than the hand-
written files, and the one below the line is sparser.

In Figure 11(b), we examine a particular file, “engine.ml,”
which is the source code for Yakker’s parsing engine. We
plot the position in the file against the parser’s total mem-
ory footprint. Note the flat section of the graph between
approximately positions 2500 and 8000. That part of the
source is a comment, which contains no semantic actions
and, therefore, results in no history growth.

7. RELATED WORK
Our work touches on a number of different elements of

parsing theory and implementation, including semantic ac-
tions, AST inference and parse forests.

Regarding semantic actions, there is a broad spectrum
of techniques for supporting user-specified semantics for a
grammar. Some systems, including the many variants of
Yacc, execute semantic actions during parsing [3]. While
more typical of deterministic parsers, some general parsers
do the same, for example, Elkhound executes actions during
parsing, and provides the user with low-level control over
semantic-value management to address the complications
that arise from ambiguities [5].

On the other end of the spectrum are systems like SDF,
which automatically constructs a default parse forest and
leaves forest processing to other tools [12, 13]. Attribute
grammars, too, typically delay attribute evaluation until af-
ter parsing, at which point attributes are evaluated based
on the entire parse tree [6].

In between these approaches are systems that provide
a special-purpose language of annotations for constructing
parse trees [7], or for transforming parse trees to more use-
able forms [9, 4]. Our work is most closely related to these
“in-between” approaches, such as the restructured derivation
trees (RDTs) of Johnstone and Scott.

RDTs are like abstract syntax trees derived by transfor-
mation from the derivation (parse) tree, rather than by fiat.
They leverage the insight that abstract syntax trees are gen-
erally a small delta from parse tree, and that, therefore, the
effort of building up ASTs in semantic actions from scratch
is largely redundant. They extend context-free grammars
with a language of annotations for transforming parse trees
to RDTs, which can then be used like ASTs in downstream
processing. Our forests are parallel to their RDTs, keep-
ing only information related to execution of semantic ac-
tions. However, whereas they provide an explicit language
for transforming parse trees to RDTs, we infer the transfor-
mation based on placement of semantic actions. They do
specify an algorithm for automatically inferring a canoni-
cal RDT for any BNF grammar[9], but the transformations
employed are based on syntactic considerations, whereas we
utilize semantic considerations.

Our implementation methods also parallel those of John-
stone and Scott. They compile annotated grammars (called
TIF grammars) into a lower-level language of syntax-directed
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Figure 11: History evaluation for the OCaml grammar. Plot (a) compares, for all of Yakker’s source files, the
numbers nodes of the SPPF representing that source against the source’s size. Plot (b) shows, for a single
OCaml source, the memory footprint of our parser for each position in the source.

definitions with explicit parse tree construction. While the
intermediate language in their more recent paper is seman-
tically closer to Gul, they also describe compilation to a
Gil-like language of translation schemes in their earlier pa-
per. Finally, their “TIF transformed grammars” (TTGs)—
the grammar of the RDTs derivable from a TIF grammar—
correspond to our grammars for histories.

Note that our technical distinction from systems which
omit support for semantic actions does not imply an ide-
ological distinction on the question of whether embedded
semantic actions harm the declarativity of a grammar. Gul
could play the role of a target language for a deforesting-style
optimization applied to, for example, an SDF grammar and
corresponding tree transform.

Regarding parse forests, the terminology of shared packed
parse forest originally comes comes from Tomita [11], al-
though similar data structures were used in earlier work.
The particular style of SPPF which we implement as the
forest data structure is most closely related to the bina-
rized SPPFs of Scott et al. [10, 8]. Their focus on sharing
prefixes and suffixes of subparses, rather than sharing and
packing parses of entire nonterminals, was most appropriate
to our support for regular right sides (in addition to being
asymptotically more efficient).
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