Certificate Distribution
with Local Autonomy

Pankaj Kakkar, Michael McDougall, Carl A. Gunter
University of Pennsylvania*

Trevor Jim
AT&T Laboratories!

May 5, 2000

Abstract

Any security architecture for a wide area network system spanning
multiple administrative domains will require support for policy delega-
tion and certificate distribution across the network. Practical solutions
will support local autonomy requirements of participating domains by
allowing local policies to vary but imposing restrictions to ensure over-
all coherence of the system. This paper describes the design of a such
a system to control access to experiments on the ABone active network
testbed. This is done through a special-purpose language extending the
Query Certificate Manager (QCM) system to include protocols for secure
mirroring. Our approach allows significant local autonomy while ensur-
ing global security of the system by integrating verification with retrieval.
This enables transparent support for a variety of certificate distribution
protocols. We analyze requirements of the ABONE application, describe
the design of a security infrastructure for it, and discuss steps toward
implementation, testing and deployment of the system.

Keywords: Security policy, certificate distribution, local auton-
omy, access control, ABone, active networks, QCM, Query Certifi-
cate Manager.

1 Introduction

Active network systems will require practical approaches for managing access
control information securely and conveniently on a wide area network. The

*Point of Contact: Michael McDougall, mmcdouga@saul.cis.upenn.edu, PhD Student,
Dept. of CIS, University of Pennsylvania, 200 South 33rd Street, Philadelphia PA, 19103.
Phone: 215-898-0677 (day), 215-925-5621 (night), 215-898-0587 (FAX).

fThis work was carried out while Trevor Jim was at the University of Pennsylvania.

technology for doing this will need to reach beyond the current state of the art
for policy description techniques and certificate distribution. A good test case
for understanding requirements and possible solutions for the problem is the
management of the access control mechanism for experiments on the ABone [2],
an emerging testbed for research in active networks. Requirements and solutions
for the ABone also have relevance for many other wide area network systems
beyond active networking.

The aim of this paper is to discuss the requirements and design of an access
control infrastructure suited to wide area systems like the ABone. The princi-
pal focus is on the concept of local autonomy, wherein nodes within multiple
administrative domains are allowed to define their own policies. This capability
has two primary policy aspects: authorization policy and certificate distribu-
tion policy. There have been a number of recent proposals about how to express
authorization policies in large-scale distributed systems [4, 16, 5, 3]. Work on
certificate distribution has focused on the design of directory systems such as
DNS/DNSSEC [19, 17, 1], the ISO Directory [13], and the Lightweight Directory
Access Protocol (LDAP) [22, 12]. Such directories are used to hold certificates
(digitally signed documents) providing information on which authorization poli-
cies are based. Other relevant work [14, 11] focuses on the formats of certificates
and protocols like chaining of certificate authorities and revoking certificates.
A key challenge for the use of such systems by wide area network applications
is reconciling the demands of local autonomy with the functionality of the dis-
tributed system as a whole. Local autonomy is needed in the ABone and many
other wide area distributed systems because different domains have needs and
goals that may be in conflict. For scalability, the policy of one domain may have
to rely on the policy of another domain. But a domain should be free to define
its policy by taking what it wants from another domain’s policy and discarding
what is not appropriate. However, it is possible that such variations lead to a
situation in which no domain is able to maintain the policy it requires, given its
reliance on other domains with different policies.

Our own work on security infrastructure has focused on ideas for integrat-
ing verification and certificate retrieval using a technique called policy-directed
certificate retrieval [7]. The basic idea is that the verifier is in the best posi-
tion to determine what certificates are required, so it can be used effectively for
the retrieval of certificates. Our implementation of this idea is a system called
Query Certificate Manager (QCM), which enables a verifier to express policies
for distributing certificates and retrieving them automatically as part of verifi-
cation. The aim of QCM is to accomodate significant flexibility for both access
and retrieval policies while ensuring consistent global security and tractable
distributed computation. We therefore explore the idea of using policy-directed
certificate retrieval as realized by QCM in maintaining the ABone access control
infrastructure.

The ABone is under design currently (see [2] for a description of objectives
and approach), so it requires both short and long term solutions. A short-term
solution must support a modest number of participating nodes with an approach
that can be implemented almost immediately with little impact on existing

alice.com r8K+gZ4ZRob5usA675. . .
bob.com udoNOw7BOK65hhwpw. . .
careless.org umVy3uv1LpaSx7W83...

Figure 1: An ABone access file, with keys abbreviated.

software for the ABone, namely the various Ezecution Environments (EE’s)
for evaluating active packets and the Active NETwork (ANET) [20, 21] system
for installing EE’s. A long-term solution will need to provide support for an
expanding collection of nodes and more complex access policies and distribution
strategies.

We begin our analysis in the second section of this paper with a discussion
of the simple authorization architecture initially used by ANET. We explain
why this approach can be improved and present an architecture and language
for our approach. In the third section we describe secure mirroring protocols,
which can be used to provide a simple ACL managment system with modest
local autonomy. In the fourth section we describe more advanced features based
on policy-directed certificate retrieval as applied to the ABone and show how
these features provide significant local autonomy. A final section summarizes
conclusions.

2 ABONE Requirements and Proposed Infras-
tructure

The ABone is a collection of computers being used to run active networking
experiments over the Internet. An active network system consists of one or
more Active Applications (AA’s) running on top of an EE that defines the se-
mantics of code contained in active packets. ANET is the system for installing
EE’s on ABone nodes, which are mainly Unix hosts currently, but could be
special-purpose active routers. ANET provides support for a server process
called ANETD, the ANET Daemon, that responds to requests to run ABone
experiments on the node where the daemon is running; ANET also provides
a client that allows users to request and configure experiments on the ABone
testbed by contacting ANETD servers. In the current version of ANETD, per-
mission to carry out such an experiment is determined by the nodes on which
the experiment will be run by consulting an Access Control List (ACL) consist-
ing of public keys of principals permitted to perform experiments. In a typical
scenario, a claimant client approaches a verifier server running ANETD with
a certificate requesting access to the server for the purpose of conducting an
experiment. Each user of the ABone generates their own 512-bit RSA key pair
and registers the public key with a master server, currently operated at SRI.
The master server at SRI maintains a master ACL listing the public key and
host of every ABone user. An example is given in Figure 1. When a claimant

makes a request, it is signed with his private key, and the verifier checks this
against public keys of permitted users. In the early versions of ANET, the first
time ANETD ran on an ABone node, it queried the master server for the cur-
rent ACL of permitted users. Once acquired, maintenance of this list was left
to the administrator of the ABone node. Each local administrator was free to
modify their copy of the list by adding or deleting users. This provided every
ABone node autonomy over its own access policy.

This approach is sufficient for a few nodes if administrators are diligent about
maintaining their ACLs, and the number of nodes is not changing much. How-
ever, it is hoped that the ABone will grow to more than a thousand nodes within
a few years, and, for several reasons, this strategy will not scale. First, when a
new user joins the ABone, their key is posted to the ACL of the master server,
but there is no mechanism for propagating the new key to machines already run-
ning ANETD. If the user needs to run an experiment on these machines, their
administrators will probably need to be contacted individually. Second, each
site administrator maintains their copy of the list by hand. So, even if the hosts
and keys of new users were distributed from the master server automatically,
the administrators would have to process them by hand. Also, local policies are
not written down anywhere; they just make their effects known in the local copy
of the list. For example, if an administrator believes that careless.org has
been infiltrated, he can delete every key associated with careless.org from
his copy of the list, but there is no record to tell him not to put new keys from
careless.org onto the list.

There are at least four basic strategies for dealing with these problems using
certificates (signed documents) based on the following fundamental tradeoffs:

1. Whether the claimant or the verifier is responsible for obtaining certifi-
cates, and

2. Whether the certificates are long-term or short-term.

For instance, one idea is to allow the master server to issue certificates to per-
mitted users asserting their right to do experiments. The opposing idea is to
provide a means for ANETD servers to consult the master server about re-
quests to set up experiments before or as the requests arrive. Both cases break
down into significantly different solutions depending on whether certificates are
long-term or short-term. Consider first the case in which the claimant proves
permission by providing a certificate. In the short-term case, the master server
could issue a certificate to a principal for a period just long enough to set up an
experiment. This has the disadvantage of requiring the server to be consulted
many times by the same principal if many experiments must be conducted.
If a long-term certificate is issued instead, the need for repeated requests for
new certificates will be reduced. However, this opens the possibility that if the
principal loses privileges or suffers a compromise of his private key, then some
system may be needed to revoke the certificate. Now consider the case in which
the verifier proves permission based on a signed request from a claimant. The
tradeoff between long-term and short-term certificates remain the same, but in

this case the verifier can check a local ACL for information about the claimant
and act accordingly, without expecting the claimant to supply any additional
certificates. An advantage of this approach is that it need not place any new
responsibilities on either the ANET client or server. A claimant does not need
to obtain or maintain the freshness of any certificates to make requests, and the
verifier need not know how its ACL is being kept up-to-date.

Given these considerations, the use of verifier-gathered certificates provides
a simpler and more modular approach to improving ABone ACL maintenance.
Given a design goal for a short-term solution that entails no changes in the
behavior of ANETD, the best solution is to mirror the ACL of the master
server at each server location. We consider two protocols for secure mirroring
based on an online signature from the master server and the ability of ANETD
servers to establish local policies about freshness. Note that ANETD servers
are clients of the master ANET server, so they are the clients in the following
protocols:

Client Pull The client periodically requests a fresh copy of the ACL by sending
a hash of its current copy. The server checks to see if the master ACL has
this hash. It sends a fresh signed copy if it does not, otherwise it sends a
notification that the client ACL is still up-to-date.

Server Push The server accepts requests from clients to register for updates to
the master ACL and supplies the master ACL upon registration. When-
ever the master ACL changes, the new ACL is signed and distributed to
registered clients. Since clients may become unreachable, the server times
out entries in its register so clients must periodically re-register themselves.

Details and comparative discussion of these protocols will be provided in the
next section. The mirroring protocols provide a very modest degree of local
autonomy to ABone nodes. A node may choose how frequently it wishes to
update its ACL, but will not be able to customize the contents of that ACL.
Moreover, claimants are unable to provide credentials certifying their rights, so
they will need to rely on the freshness of ACLs at verifiers. If a node uses a
client pull with a low frequency of update then a claimant may be unable to
obtain access for a substantial period.

Although it is a substantial improvement over manual maintenance of ACLs,
local autonomy over mirroring the local ACL is a somewhat weak degree of
authority. To go beyond this, it is desirable to think in terms of a different
architecture where ANETD and QCMD communicate in a more sophisticated
manner. A possible architecture is illustrated in Figure 2. In this version of
ABone security, a QCM daemon, QCMD, runs on each ABone node along with
ANETD. QCMD is responsible for maintaining the policies of the node and
for certificate distribution. ANETD addresses all policy questions directly to
QCMD, instead of looking at a local copy of the ABone user list. When QCMD
needs to perform certificate distribution, it exchanges messages with QCM dae-
mons on other nodes.

ANET ANET
Client Seliver
QCMD QCMD
Other
QCMDs

Figure 2: QCMD Communication

With this architecture, the ABone is able to take advantage of the mirroring
protocols as well as the following QCM protocols:

Certificate Push Certificates are accepted from a claimant and used to avoid
reference to remote policies.

Online Query/Response A QCM policy may refer to a policy at a remote
principal. If a request is made for a certificate from the remote principal
this is retrieved with appropriate signatures. The certificate is created
dynamically using an online key.

Verify Only Verification is based only on local policies and certificates pushed
by the claimant.

Offline Query/Response A collection of certificates may be created in ad-
vance with offline signing. A request for a certificate is answered with all
relevant certificates thus created and the recipient constructs the necessary
response from these.

The main point here is that all six of these retrieval and verification mecha-
nisms can be made to work coherently together with each claimant and verifier
choosing its own strategy. These protocols are further illustrated in Section 4.
Our overall proposal for the ABone security infrastructure is to provide a
special-purpose langauge supporting six protocols to enable local autonomy with
policy-directed certificate retrieval. A grammar for the language is provided in
Table 1. This is simplified from what would be required for the actual system.
For instance there is a need for wrappers to expose underlying data sources.

Table 1: QCM With Mirroring

d::

g

p

r=e€
Tr=

pullserver(zx)

x1 = pushclient(c$zs, t1,t2)

pushserver(z, t)

8 T+ 0

e$z)
€1y--,€n)
{e1,...,en}
Ue
{elgi, - 9}

—~

= (e1 =e2)
| (e1 #e2)
| (p€e)

::L’|C|(p1,...,pn)

| import(data)

| z; = pullclient(c$zs,t1,t2)
|

|

|

definitions
import
pull client
pull server
push client
push server

constants

time periods
local names
global names
products

sets

set union
comprehensions

guards
generators

patterns

3 Mirroring Protocols

Mirroring is a common strategy for certificate distribution. Under mirroring,
the master ACL is kept at the master server, but all the other ABone nodes
have a copy, and changes to the master ACL are propagated to the copies. Both
push and pull protocols ensure a weak consistency between the master policy
and the mirrors: the mirrors may be out of date with respect to the master, but
changes are guaranteed to propagate within a specified time window based on
the reliability of the connection between the master server and its mirrors.

3.1 Characteristics of the Protocols

In the ABone implementation, the access control lists are treated as public
information, so we are not concerned about maintaining the confidentiality of
the lists. However we are concerned about integrity; we want the copy of the
access control list to be an accurate copy. By ‘accurate’ we mean the copy of
the ACL is the same as a recent version of the central access control list. There
are two ways integrity can be violated:

1. The mirrored list is corrupted—for example, it contains entries that were
never in the master ACL.

2. The mirrored list is out of date—for example, the ACL contains an entry
that was valid at one point but is invalid now.

The mirroring protocols use digital signatures to ensure integrity. The mes-
sages are not, encrypted, since the data is not considered confidential. We are
less concerned about availability since we expect the ACL to change compar-
atively slowly. Also, the characteristics of the server and network mean that
some kinds of denial of service attacks are very difficult to stop. On the other
hand, we do not want the protocol to make it easier for an adversary to mount
a denial of service attack. To aid this objective, both the mirror protocols use
timestamps to frustrate certain kinds of attacks. Since clocks will not be per-
fectly synchronized, we use a freshness threshold time period f. Timestamps
are considered fresh if are within plus or minus f time units of local time.

3.2 Pull mirror protocol

The pull protocol puts the onus on the client to make sure it has an up-to-
date copy of the mirrored data. The protocol is parameterized by two time
descriptors: the period for sending update requests to the server, CRequestP,
and the amount of time that the client waits for a valid server response before
it resets its ACL, CResetT0. The parameters are passed in the declaration on
the client C:

x = pullclient (K s$y, CRequestP, CResetT0).

The server S must declare its willingness to engage in the protocol for this data:
pullserver(y).

We use the notation Sk (M) for the triple M, K,o, where M is a message, K
is a public key, and o is the hash of M signed by the private key corresponding
to K. The protocol works as follows:

1. The client periodically (with a period of CRequestP) checks with the server
to be sure that its copy of the data is up-to-date. It does so by sending
a Changed? message to the server. The Changed? message contains the
name y of the policy being mirrored (e.g., ACL), the hash h of the client’s
version of the data, a timestamp t¢ and the server’s public key Kg.

C — S : S¢(Changed?(y, h, tc, Ks))

The client keeps a record of the timestamp t¢, which is used to synchronize
with the server’s responses.

2. On getting such a request from a client, the server first checks the signature
on the message, checks the freshness of the request using the timestamp in
the message, and verifies that the message was meant for it (using Kg). If
the hash of the data at the server is different from the hash h sent by the
client, then the client is out-of-date, so the server sends the new data v to
the client, including the timestamp sent by the client, a new timestamp
based on its current time, and the client’s public key:

S — C : Sg(NewVersion(y,v,tc,ts, Kc))

If the hashes are the same, then the client must have an up-to-date version
of the data, so the server responds by sending a NoChange message:

S — C : Ss(NoChange(y, tc,ts, K¢))

3. When the server’s response is received by the client, it checks the signature
and freshness as before, then verifies that the message was meant for itself,
and then confirms that the ¢¢ in the server’s response matches the value
it remembered.

If the above checks succeed, and the message received by the client contains
a new version of the policy being mirrored, then the client updates its
policy. Otherwise the policy is left unchanged.

4. If CResetTO time passes since the last response was received from the
server (responses could be lost due to network congestion or a malicious
agent in the network) the client resets the local copy of the policy to the
null set.

The protocol preserves data integrity: because the reply from the server
is signed, the client can be sure that the data was not tampered with, and,
because it contains the timestamp, the client knows it is fresh. Moreover, we
can guarantee that anybody who is in the local copy of the policy was in the
server’s master copy at some point in time. The worst damage an attacker could
cause is to deny everyone access to a client by blocking traffic between the client
and server for a sufficiently long time, thus causing the client’s copy to reset.
We believe this is better than allowing access to someone who is no longer in
the server’s policy, which could happen with a stale local copy.

The timestamps are essential to the security of the protocol and are intended
to reflect recommendations in the ISO/IEC standard for entity authentication
using digital signatures [15]. Consider an alternate version of this protocol in
which we eliminate the timestamps. Of course, this would allow a replay attack;
an adversary could save old messages and then send them later to confuse clients.
This weaker protocol may also enable a kind of denial of service attack we call
traffic amplification. Adversaries could exploit the protocol to effectively amplify
the amount of junk traffic that they can generate.

If an adversary £ wanted to overload the network connection of C, then &
could simply send junk packets to C. But &’s ability to overwhelm C is limited
by the bandwidth of £’s network connection. The traffic amplification problem
could occur if the adversary £ saved a Changed? message from C. & could
then send the message over and over again to the server S. If S responded to
each message by sending a large file to C then the resulting traffic may clog C’s
network connection. Thus S amplified &’s ability to clog C’s bandwidth.

The timestamps allow the server and clients to ignore messages which are not
fresh. An adversary can only clog C’s connection while the Changed? message
is fresh. If the server keeps track of which timestamps it has seen then the
attack can be prevented entirely; the server can discard messages that contain
timestamps that the server has already seen. This does not put much burden on
the server because timestamps only have to be saved until they become stale.

3.3 Push mirror protocol

The push approach puts the onus on the server to make sure that changes
to the data are propagated to the clients. The protocol is parameterized by
three time descriptors: a client side re-registration period CRegisterP, a server
side registry flush period SRegisterTO and a client side policy reset timeout
CResetT0. Two parameters are passed in the declaration on the client:

x = pushclient(K s$y, CRegisterP, CResetT0).
The remaining parameter is supplied by the server declaration:
pushserver(y, SRegisterT0).

Here is the protocol:

10

1. The client tells the server that it wants to receive updates for the policy
y. It sends to the server the name of the policy, a hash of the current local
copy of the policy, a timestamp, and the server’s public key.

C — S : Sc(RegisterMe(y, h,tc, Ks))

2. The server performs checks for the signature and freshness and whether
y is available as a push server, then adds the client to its table of regis-
tered clients if these checks succeed. It sends an immediate NoChange or
NewVersion message as in the previous protocol. After that, whenever
the server’s policy y changes, the server sends updates through Update
messages to registered clients:

S — C : Ss(Update(y, v, ts, Ks))

3. Whenever the client receives an Update message, it checks the signature,
freshness, and origin. If these succeed, it updates the local copy of y to v.

4. After SRegisterT0 time passes the server removes the client from the
table of registered clients. The server will not send any more updates to
the client until it receives a new RegisterMe message. The client will
re-register by sending a new RegisterMe every CRegisterP time.

5. As in the pull protocol, if an update from the server is not received for
CResetTO0 time, the client resets its local copy of the policy to the null set.

3.4 Which Strategy: Push or Pull?

The protocols have different advantages that depend on the kind of data that
is mirrored and the network capabilities of the client and server. If the data
changes infrequently then the push protocol may be more appropriate since
messages will only be sent when the data actually changes. The push protocol
also allows faster propagation of changes since the change can be passed on
to the client immediately. The pull protocol allows the client to control its
interaction with the server. If a client does not want frequent updates or can
only connect with the server at certain times (at midnight, for example) then
the pull protocol would be more appropriate.

We have left open the question of whether the protocols are implemented
reliably or unreliably and, in the case of the push protocol, whether updates
from changes to the data are sent to registered clients by unicast or multicast.
The experiments we describe next used unreliable unicast (UDP), and we have
implemented a reliable unicast (TCP) version of the push protocol.

3.5 Experiments

Since mirroring is intended to provide short-term support for ABONE security,
we wanted to know about how many nodes could be supported by these proto-
cols. Test data is unavailable currently. Various attempts have been made to

11

simulate certificate retrieval, such as using DNS resolvers as a source of traffic
information [18], but we are not convinced that this is worth the trouble for
us, given the likely differences between DNS, which has a retrieval mechanism
based on referrals and on-demand caching, and the system we propose, which
uses mirroring. Moreover, it is somewhat questionable whether access control
information for the ABone has a traffic profile at all similar to resolution of
domain name bindings. Hence we have used a straight-forward stress model
that assumes extremely frequent registrations of ABone users. We measure the
failure rate of the protocols under this stress. Our experiments were conducted
on a cluster of 5 dual Pentium-II machines running Linux and an UltraSparc
machine running SunOS. We ran an ANETD/QCMD server on the UltraSparc,
and 500 client ANETD/QCMD’s on the cluster, 100 per machine. We conducted
the following experiments:

1. In the first experiment, we started all clients on the cluster almost simul-
taneously. All 500 clients executed the pull protocol, with a 60 second gap
between successive requests for the ACL. As a result, the server had to
deal with very intense but short bursts of requests. We found that on the
average, about 70% of the requests sent by the clients were dropped by
the server.

2. In a second experiment, we staggered the startup of the clients so that the
demand on the server was more constant. Again, all clients executed the
pull protocol. We found in this case that the server could handle all 500
clients well, and that no requests were being dropped.

3. Finally, we tried a mixture of push and pull clients. 250 of the clients used
the push protocol, while the rest used the pull protocol as before. Again,
the server could handle all requests sent to it, and could get updates out
to the push clients on time.

The experiments suggest that mirroring will scale well beyond 500 nodes. In
practice, we expect the master access list to change very slowly, so a 60 second
delay in updates is overkill. Mirroring will be able to handle the projected
growth of the ABone for the immediate future. However, since the system is
currently being deployed, we will have the ability to conduct more direct tests
of this claim in the future.

4 Distribution Beyond Mirroring

Let us now discuss other protocols required to provide more substantive support
for local autonomy of ABone nodes. We describe how policy-based certificate
retrieval can be achieved for the ABone by describing the QCM system protocols
with sample ABone policies as examples. The basic functionality provided by
QCM is to securely evaluate a policy to a table. If the policy is defined in
terms of remote policies, then QCMD is responsible for securely obtaining those
policies. Once QCMD has produced the table, ANETD can use it to decide

12

{ ("alice.com", Principal (RSA-MD5 ("r8K+gZ4ZRobusAB75..."))),
("bob.com", Principal (RSA-MD5 ("udoNOw7BOK65hhwpw..."))),
("careless.org", Principal (RSA-MD5("umVy3uviLpaSx7W83..."))) }

Figure 3: QCM syntax for the table of Figure 1.

whether to authorize requests. The grammar for the language is provided in
Table 1. To keep things simple we have omitted the lifetimes for certificates;
our implementation provides and checks expirations to prevent replay attacks
and accidental use of old data. More details on the QCM implementation can
be found in [7], and a formal semantics is provided in [6].

4.1 Strategies for Supporting Local Autonomy

Security policies are often given in the form of a table. For example, access
matrices, public key directories, and access control lists can all be thought of
as tables, as can the ABone policy given in Figure 1. QCM was designed to
support table-based security: in QCM every policy defines a table. The syntax
for table definition is illustrated in Figure 3, which gives the QCM equivalent of
the ABone policy of Figure 1. For backwards compatibility, we can also provide
notation to import ABone-style lists from files into QCM’s internal format:
import ("hosts.allow") is the QCM table (policy) obtained by reading in the
ABone file hosts.allow.

In QCM policies are defined and controlled by principals who give them
names. For example, a principal K; could give an access control list the name
ACL, or a public key directory the name PKD. Nothing prevents another principal
K, from assigning different definitions to the names ACL and PKD. To distinguish
between the policies of different principals, we use global, or fully-qualified,
names: K;$ACL (pronounced “K;’s ACL”), or K»$ACL.

When a principal needs to distribute its policies out into the network, it
typically does so using a signed document. Such a document cannot be used
without verifying the principal’s signature, and this requires the principal’s pub-
lic key. To ensure that a principal’s key is available when needed, we identify
principals with their keys; that is, in QCM, principals are keys. Names and
the strategy of using keys as principals are used in other policy languages, and
we borrowed our notation for principals from one of them, SDSI [16]. Some
examples appear in the table of Figure 3. Since principals are long, we usually
abbreviate them with K, K', etc.

We can now give the QCM policy of the master ABone server, S: the server
has a public key K that is widely known, its policy is a definition

ACL = import("hosts.allow"),

and other ABone nodes can refer to the server’s policy as Ks$ACL.
We still need a way for an ABone node to define a policy that incorporates
the server’s policy, but overrides it where desired. QCM supports this through

13

composite policies that refine, augment, and combine the policies of multiple
principals. ACL1, below, is a composite policy.

ACL1 = { (h,k) | (h,k) <- Ks$ACL, h != "careless.org" }

C|7)

Here, stands for ‘where,” and ‘<-’ stands for ‘is an entry of” and != stands
for ‘not equal to’ #. Thus, in words, the policy says

ACL1 is a table with entries (h,k), where (h,k) is an entry of
Ks$ACL, and h is not "careless.org".

So, ACL1 discards some unwanted entries from the server’s table. Entries
can also be added, using union:

ACL2 = union(ACL1,
{ ("claire.com", K¢aire) })
where union(el, e2) is a syntactic sugar for (Jel, e2 (|J is an operator
that takes a set of sets as an argument and returns the union of those sets a
result).
Finally, a composite policy can be built from the policies of multiple princi-
pals:

ACL3 = { (h,k) | (h,k) <- Kg$ACL, (h’,k’) <- Kpo,r$ACL,
h=h’, k=k’ }
This is the intersection of the ACL’s of Kg and Kpen: (h,k) is only an entry
of ACL3 if it appears in the policies of both S and Bob. This is how QCM can
define policies that depend on the joint authority of multiple principals.
For example, suppose a client ANETD uses the policy ACL1 from above to
decide whether to grant requests to run active network experiments:

ACL1 = { (h,k) | (h,k) <- Ks$ACL, h != "careless.org" }

If ANETD receives a request originating at alice.com and signed by Kajjce,
it needs to find out whether (alice.com, Kajice) appears in the policy ACL1. It
uses QCMD to find out, by asking it to evaluate the following policy to a table:

{ "yes" | ("alice.com", K,jice) <- ACL1 }

If ("alice.com", K,jice) is an entry of ACL1, the policy will evaluate to the
table {"yes"}. Otherwise, the policy will evaluate to the empty table, { }.
So, if QCMD’s answer is {"yes"}, ANETD grants the request, otherwise, the
request is denied.

Policy evaluation is easy if all of the policies can be gathered in one place,
as we see here:

Ks$ACL = { ("alice.com", Kalice)
("bob.com", Kyon)
("careless.org", Kcareless) }

ACL1 = { (h,k) | (h,k) <- Kg$ACL, h != "careless.org" }
{ "yes" | ("alice.com", K,jice) <- ACL1 }

14

For example, to evaluate { "yes" | ("alice.com",Kjjice) <— ACL1 }, first
evaluate ACL1 to a table, then iterate over every entry. If ("alice.com", Kajice)
appears, then add the entry "yes" to the result. ACL1 can be evaluated similarly.
The final answer is {"yes"}.

Usually, however, the necessary policies will not be available at every node.
In this case QCMD must use some kind of retrieval protocol to obtain the
remote policies. We support a variety of protocols, each with advantages and
disadvantages for the parties involved. The rest of this section discusses the
protocols and their tradeoffs.

4.2 Certificate Push

Most systems for verifying access control policies will not retrieve missing cer-
tificates. Instead, they require certificates to be presented to the local policy
engine by the party who wants to be authorized. We call this a ‘push’ protocol
because certificates are not requested by the policy engine, they are supplied
as inputs by some out-of-band means. QCM supports a push protocol using
certificates of the following form.

<Document = Member ("ACL", ("alice.com", Kgjice)) »
Signature = "mQinGCBzKGtza4X6...",
Signer = Kg>

The certificate says that ("alice.com",Kajce) is an entry of the table
Ks$ACL. For the certificate to be valid, its signature must have been produced
by the signing key of K; this can be verified with Ks. (We also support certifi-
cates with expiration dates.) If Alice presents this certificate to ANETD along
with her request, ANETD simply passes it on to QCMD. QCMD verifies the
signature on the certificate, uses it to construct an approximation to the table
Ks$ACL, and adds the approximation to the local collection of policies:

Ks$ACL = { ("alice.com", K.jice)
ACL1 = { (h,k) | (h,k) <- Kg$ACL, h != "careless.org" }
{ "yes" | ("alice.com", K,jice) <- ACL1 }

At this point, QCMD proceeds with local policy evaluation as usual, giving
the answer {"yes"}. Of course, the approximation is not the actual value of
the table Ks$ACL. QCM has an important monotonicity property that justifies
use of the approximation. The table that QCM computes for the policy is an
approximation of the real value of the policy. Monotonicity means that if QCM
starts off with a better approximation for remote policies, then it computes a
better approximation for the result. This means that if QCM says that "yes"
is an entry of the table, then no additional information about Ks$ACL could
imply that "yes" is not in fact an entry.

Monotonicity guarantees that no request is granted when the remote policy
says it should be denied. But there is no guarantee that all requests that should
be granted, will be granted. If Alice presents an invalid or expired certificate

15

with her request, then under this protocol her request will be denied even though
she appears on the master access list at S. This places a significant burden on
Alice: she has to manage her certificates, and periodically request new ones
as they expire. Virtually all policy languages use the ‘push’ approach, but
we believe it is unrealistic to expect unsophisticated users to manage their own
certificates. At the very least, users will require some automated support to help
them manage certificates. And it may be necessary for the administrators of
the system (e.g., the ABone nodes) to take on more responsibility for certificate
distribution. Our other protocols show how this can be handled transparently
in QCM, without any policy changes.

4.3 Online Query/Response

When QCM needs the value of a policy that is not available locally, its default
retrieval policy is to obtain it using a secure query/response protocol. The
protocol involves two QCM daemons, a client that requests the policy, and a
server that supplies it.

In our example, the client C' runs at an ABone node, and the server is
running at the master ABone node at S. To obtain Ks$ACL, C' can invoke the
following protocol.

1. The client sends a query asking for the value of the policy Ks$ACL to the
server. (Recall that the principal Ks can be tagged with the location of
its server.)

C — S : Query(Ks$ACL)

2. The server has the complete definition of the policy Ks$ACL, so it can
evaluate the query by simply looking up the table. It sends the table, T,
back to the client:

S — C : Ss(Response(h, T))

The response contains a one-way hash h of the query, which can be used
to ensure that this is the answer to the question asked rather than a replay
of an answer to a different question.

3. The interpreter verifies the signature on the response using the key Kg,
and uses the hash to match up the response with the query.

The policy asked in a Query message does not have to be a policy name like
K s$ACL; it could be any policy at all. In our example, a better query would be:

C — S :Query({"yes" | ("alice.com", K,jice) <- Ks$ACL})
Instead of signing and returning the entire table Ks$ACL, the server just checks
whether ("alice.com", Kyjice) is an entry, and returns { "yes" } or the empty

table accordingly. QCMD uses query optimization to automatically choose
queries that result in smaller responses.

16

The query /response protocol is invoked automatically by QCMD—ANETD
does not have to do anything different. Just as with the push protocol, ANETD
formulates the query it wants answered, then submits the query and any cer-
tificates it might have received from Alice to QCMD. QCMD uses whatever
certificates it can, and sends queries to obtain remote policies when it needs to.

The server could of course refuse to answer the client’s query, or, the server
might be down. If so, the client QCMD returns an error. Another idea is to
allow QCMD to assume its response is the empty table and continue evaluation.
Since the empty table is a valid approximation for any other table, monotonicity
guarantees that this cannot cause the request to be granted when it should be
denied. Other available certificates might be sufficient to grant the request, so
the client will continue with evaluation.

4.4 Verify Only

The normal QCMD evaluation strategy is to take whatever certificates are
pushed at it, use them to the extent possible, and use query/response to obtain
any other needed certificates. Sometimes the client may want to rule out even
this limited query/response. Therefore we provide a mode, called verify-only
mode, in which QCMD never invokes query/response. In this mode, a request
will only be granted if all necessary certificates are presented to the client up
front.

4.5 Offline Query/Response

The query/response protocol we described above required the server to sign
responses online. The server at S might prefer not to have the signing key
online. In that case, pre-signed responses can be prepared on a machine not
attached to the network, and stored on the server. Then the protocol works as
follows.

1. The client formulates its query,), as usual and sends it to the server.
C — S :Query(@)

2. On startup, the server is given the certificates that were signed offline.
The certificates describe the content of tables defined by Kg; the server
can reconstruct the tables from the certificates. Once the server has the
tables it can evaluate @); as it does so, it remembers what entries in the
tables are accessed, and what certificates contributed to the entries. The
server does not return the answer that it computes, since it cannot sign
it; instead it returns the required certificates. Each individual certificate
is signed, so the complete message does not have to be signed.

S — C :Certificates(ci,...,cpn)

17

3. The client receives a Certificates message instead of the Response mes-
sage that it would have received if the server was doing online signing. The
client checks each of the signatures on the supplied certificates, and eval-
uates the original query in verify-only mode, using the certificate push
protocol to take the supplied certificates into account.

5 Conclusion

We have described a system and policy description language to maintain access
control infrastructure for the ABone experimental testbed. Our approach is
based on an extension of the QCM system and provides a significant degree of
local autonomy as well as support for policy-directed certificate retrieval. We
have described two secure mirroring protocols and how they can be integrated
with a collection of other protocols. The protocols have been implemented, and
this paper describes some simple tests to measure the scalability of the mirroring
protocols for the ABone. We end with a brief discussion of some additional
issues: revocation, integration with other policy and certificate systems, and
control of loops.

If long-term certificates are used, then there is usually demand for a revoca-
tion mechanism, that is, an ability to announce that a valid certificate which is
properly formed and not expired should no longer be respected by verifiers. This
introduces many complexities. We have developed a way to do policy-directed
certificate retrieval with revocation: [6] describes a language and analyzes its
security model rigorously. We have also developed an implementation for an
internal language supporting this model of revocation (an external language
would be used by policy writers and then compiled into the internal language).
These extensions could be added to the language in Table 1 at the cost of more
complexity than we could discuss in this paper. We refer the reader to [6] for
details. In its initial deployment, QCMD will avoid both long-term certificates
and revocation.

QCM uses its own certificate formats, but there does not appear to be any
impediment to using X.509v3 formats if this would aid interoperability with
other systems. It is unlikely that any single policy description system will
satisfy all needs, so our expectation is that some ‘glue’ between such systems
will be necessary. QCM seems best suited for coarse-grained access control
such as the ABONE rather than fine-grained access control like the policy of a
reference monitor in an operating system. An interface for using QCM for access
control in the PLAN EE [10] was developed by Hicks [8] and used to develop an
active firewall application [9]. In this case, QCM was used to determine policies
about which network services various agents were allowed to use. Efficiency was
enhanced by caching information about QCM verification decisions.

Another interesting problem with QCM is the threat of circular dependencies
such as a situation in which principal A delegates to prinicipal B and principal B
delegates to principal C and principal C delegates to principal A. This problem
can be addressed by assuming that such circles of common interest work out

18

a reasonable delegation structure among themselves ‘out-of-band’. Research is
underway on an automated solution; for instance QCM queries could carry more
information about their origins in order to detect the loop dynamically.

We have developed implementations for all of the protocols described in this
paper, but not yet in a unified system. The mirroring portion of the interface
has been implemented for deployment on the ABone, and this deployment is
currently underway. Once deployed we hope to gain additional insights about
load and interface requirements, as well as experience with what kinds of local
autonomy its users demand.

Acknowledgements.

We appreciated help and encouragement from the ABone developers, espe-
cially Steve Berson, Bob Braden, and Livio Ricciulli. The work was supported
by DARPA Contract N66001-96-C-852, ONR, Contract N00014-95-1-0245, and
NSF Contract CCR94-15443.

References

[1] D. Eastlake 3rd and C. Kaufman. Domain name system security extensions.
IETF Proposed Standard RFC 2065 (Updates RFC 1034 and RFC 1035),
January 1997.

[2] Steve Berson, Bob Braden, and Livio Ricciulli. Introduction to
the ABONE. http://www.isi.edu/abone/DOCMUMENTS/ABoneIntro.ps,
March 2000.

[3] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos Keromytis.
The role of trust management in distributed systems security. In Secure
Internet Programming: Issues in Distributed and Mobile Object Systems,
1999.

[4] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust man-
agement. In Proceedings of the 17th Symposium on Security and Privacy,
pages 164-173. IEEE Computer Society Press, 1996.

[5] Carl M. Ellison, Bill Frantz, Ron Rivest, and Brian M. Thomas.
SPKI certificate documentation. http://www.clark.net/pub/cme/html/
spki.html.

[6] Carl A. Gunter and Trevor Jim. Generalized certificate revocation. In
Thomas Reps, editor, Conference Record of POPL ’00: The 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 316-329, Boston, MA, January 2000. ACM.

[7] Carl A. Gunter and Trevor Jim. Policy directed certificate retrieval, June
2000. To appear in Software Practice and Experience.

19

[8]

[9]

[10]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

Michael Hicks. PLAN system security. Technical Report MS-CIS-98-25,
Department of Computer and Information Science, University of Pennsyl-
vania, April 1998.

Michael Hicks and Angelos D. Keromytis. A secure PLAN. In Stefan
Covaci, editor, Proceedings of the First International Workshop on Active
Networks, volume 1653 of Lecture Notes in Computer Science, pages 307—
314. Springer-Verlag, June 1999. Extended version at http://www.cis.
upenn.edu/"switchware/papers/secureplan.ps.

Mike Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott
Nettles. PLAN: A packet language for active networks. In Proceedings of
the Third ACM SIGPLAN International Conference on Functional Pro-

gramming Languages, pages 86-93, Baltimore, Maryland, September 1998.
ACM Press.

R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key
Infrastructure: Certificate and CRL Profile. IETF RFC 2459, January
1999.

Timothy A. Howes, Mark C. Smith, and Gordon S. Good. Understanding
and Deplying LDAP Directory Services. Network Architecture and Devel-
opment, Series. Macmillan, 1999.

ISO/IEC 9594-1. Information technology—Open Systems
Interconnection—The Directory: QOuerview of concepts, models and
services, 1997. Equivalent to ITU-T Rec. X.500, 1997.

ISO/IEC 9794-8. Information technology—Open Systems
Interconnection—The Directory: Authentication framework, 1997.
Equivalent to ITU-T Rec. X.509, 1997.

ISO/IEC 9798-3. Information technology—Security techniques—Entity
authentication—Part 3: Mechanisms using digital signature techniques, Oc-
tober 1998.

Butler Lampson and Ron Rivest. SDSI—a simple distributed security in-
frastructure. http://theory.lcs.mit.edu/"cis/sdsi.html.

C. Liu and P. Albitz. DNS and BIND. O’Reilly & Associates, 1992.

Patrick McDaniel and Sigih Jamin. Windowed revocation. In Raphael
Rom and Henning Shulzrinne, editors, Proceedings of the Nineteenth IEEE
Computer and Communication Society Infocom Conference, Tel Aviv, Is-
real, March 2000.

P. Mockapetris and K. Dunlap. Development of the domain name. ACM
Computing Reviews, 18(4):123-133, 1988. Also in Proceedings ACM SIG-
COMM ’88 Symposium, August 1988.

20

[20] Livio Ricciulli. Service configuration and management in adaptable net-
works. In Tenth Annual IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management, 1999.

[21] Livio Ricciulli and Phillip A. Porras. An Adaptable Network COntrol
and Reporting System (ANCORS). In Integrated Network Management,
Boston, 1999.

[22] W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol.
IETF RFC 1777, 1995.

21

