
Enhancing DNS Security using the SSL Trust Infrastructure

Christof Fetzer and Gert Pfeifer
Dresden University of Technology,

01069 Dresden,
Germany

{christof.fetzer, gert.pfeifer}@inf.tu-dresden.de

Trevor Jim
AT&T Labs-Research,

180 Park Ave.,
Florham Park,
NJ, 07932, USA

trevor@research.att.com

Abstract

The main functionality of the Domain Name
System (DNS) is to translate symbolic names
into IP addresses. Due to the criticality of
DNS for the proper functioning of the Inter-
net, many improvements have been proposed
for DNS in terms of security and dependability.
However, the current secure DNS (DNSSEC)
standard has still several problems that need
further consideration. For example, online up-
dates and denial of service attacks are not suf-
ficiently addressed. These problems are serious
obstacles that might prevent DNSSEC from re-
placing the traditional DNS. In this paper we
discuss several of these technical and economic
problems. To address these issues, we propose a
simple extension to the existing DNS. It is SSL
based and individual domains can decide inde-
pendently of each other if and when to adopt
the extensions. We show how to implement
these extensions with the help of a simple proxy
DNS server. Keywords: network services, se-
curity, WWW, DNS, dependable systems, dis-
tributed systems

1 Introduction

The Domain Name System (DNS) is used to
map symbolic names onto IP addresses. Many
Internet applications rely on this service, which
has been available for over 20 years. During

this time many vulnerabilities have been found
in DNS, e.g., denial of service [4] and cache poi-
soning [7]. Cache poisoning happens when an
adversary inserts bogus information into a DNS
cache. When a DNS server A queries the DNS
server of an adversary B, B can add bogus in-
formation to its reply message. A uses the con-
tent of the message to update its cache and in
this case, is poisoning its cache. The funda-
mental problem is that the correctness of the
received information cannot be verified because
the DNS entries are not authenticated. To ad-
dress this problem, a new standard for a secure
name service (DNSSEC) has been developed.
Unlike DNS, DNSSEC authenticates DNS en-
tries. However, after more than ten years of
development, DNSSEC has still not been de-
ployed on a large scale.

We believe that there exist three major issues
that have slowed the deployment of DNSSEC.
First, the migration from DNS to DNSSEC is
difficult and costly. Second, some companies
might have vested interests in delaying the roll
out of DNSSEC (see Section 3.3). Third, the
trust model of DNSSEC does not seem to be
a good match with the end-to-end SSL trust
model which is widely used by Internet applica-
tions.We propose an approach to address these
problems.

The main advantages of our proposed ap-
proach are: (1) ease of implementation, (2) ease
of use, and (3) an inexpensive roll out. Our ap-

1



proach is based on the the existing DNS infras-
tructure extended with SSL technology. Our
approach is evolutionary and provides a smooth
migration and roll-out. An entity that needs
the additional security can decide to adopt
our extensions independently of other entities.
While some stakeholders might also want to
slow down the adoption of our extensions, the
autonomy of adoption can restrict the influence
of such stakeholders.

The remainder of this paper is organized
as follows: Section 2 outlines the major secu-
rity problems of DNS and Section 3 discusses
how DNSSEC solves them, or not. Further-
more, we describe how DNSSEC competes with
other technologies and how different organiza-
tions and their interests are involved in this
competition. Section 4 explains how an alter-
native security concept could be realized with
the help of DNS. Section 5 concludes the paper.
A glossary can be found in the Appendix.

2 DNS Security Issues

DNS was originally specified in 1984 by Paul
Mockapetris in RFCs 882 and 883. It was de-
scribed as a distributed database with the pur-
pose to replace the HOSTS.TXT file that was
used to map hostnames to IP addresses and vice
versa.

The world wide web was growing very quickly
particularly in the late 90’s during the e-
commerce and telecommunication boom. But
already in the mid 80’s HOSTS.TXT was no
longer a suitable solution for naming in the In-
ternet.

DNS, the successor of HOSTS.TXT, is much
more scalable. The hierarchical system of DNS
names allows local control of segments of the
overall database, called zones. Each DNS zone
takes responsibility for entries in its local zone.

2.1 Trust Model

Resolving symbolic names typically requires
DNS requests to be sent to a sequence of name
servers. Most operating systems use however
very simple stub resolvers which are not able
to perform such recursive resolutions of names
(nor a caching of results). A local DNS server
is typically responsible for performing the re-
cursive resolution of symbolic names on behalf
of the stub resolvers.

The correct resolution of a symbolic name
requires that correct information be provided
by all DNS servers involved in a recursive
query. Because the communication between
DNS servers is neither encrypted nor authen-
ticated, the correctness also depends upon the
assumption that information is not modified by
the network. While the latter could be enforced
be using VPN technology1 for the communi-
cation channels between DNS servers, using a
VPN would not prevent DNS servers from send-
ing wrong information to other DNS servers.
The basic reason for this is that DNS entries are
not authenticated and hence, detecting whether
entries have been modified is difficult or impos-
sible.

DNS supports online update because many
DNS entries depend on the assignments of
DHCP servers, but it does not check the in-
tegrity of these updates.

These scenarios demonstrate that DNS de-
pends on the assumption that all DNS servers
and the communication channels between the
DNS servers are well behaved. Therefore, a
critical application should not rely on the as-
sumption that a host name is properly resolved
by DNS to determine the authenticity of a host.
Instead, critical applications need to perform an
application level end-to-end authentication.

DNS has the following major security prob-

1The TSIG extension, introduced in RFC 2845, is
not suitable in this case. TSIG can be used if there are
only few authorized clients, since it is based on shared
secrets. In a larger scenario there is a need for public
key algorithms and trusted third parties.

2



lems:

• Denial of service attacks on DNS [4] are
helped by the following two properties.
First, there are only a few root DNS
servers. Second, DNS queries are much
smaller than the corresponding server re-
sponses.

• DNS entries are not authenticated. That
means that a user is not able to verify
whether a particular entry has been forged
or not.

• DNS client/server communication is not
protected. Some adversary could forge re-
quests or responses on the way.

• DNS servers do not authenticate them-
selves. Some adversary could pretend to
be some valid DNS server.

2.2 Trusted Hosts Mechanism

There are quite a few articles focusing on se-
curity issues of DNS. An early article by S.
Bellovin [3] points out the problems of the con-
cept of trusted hosts which is used in connec-
tions with DNS. Trusted hosts is a very simple
mechanism that is used by a couple of remote
tools like rlogin, rcp or rsh. When one of these
r -commands is used between two hosts, they
must trust each other via /etc/hosts.equiv2

files. This raises four major problems:

1. Some adversary might forge his IP address
to get the permission to use a remote com-
mand or tool on the victim’s host. This
class of attacks is called spoofing and is not
within the scope of this or Bellovin’s paper
since it does not concern DNS directly.

2. Some adversary could prevent users to
use r -commands using DNS vulnerabili-
ties. Enabled by the circumstance that

2This file contains a list of trusted users and hosts.
It allows these users to use tools like rexec.

DNS queries and responses are not authen-
ticated and not encrypted they can easily
be manipulated.

3. Some adversary could forge DNS entries on
the DNS server itself. These entries are not
protected by any authentication method.

4. To accept an incoming connection the
server must check whether the client is a
trusted host. To find this information in
the /etc/hosts.equiv it first has to look
up the hostname because it only can see
the IP address within the source field of
the incoming IP packets resp. their head-
ers. This can be done with a reverse
DNS lookup. Inverse mappings are imple-
mented by a separate DNS tree, keyed by
IP addresses. The fundamental flaw that
Bellovin exploited for his attack was that
there is no forced linkage between the two
DNS trees. The forward mapping and the
inverse mapping can be managed by dif-
ferent DNS servers with different locations
and different managers.

Bellovin’s paper was withheld from publication
for 5 years. It took some time to find feasi-
ble fixes for the vulnerabilities exposed in the
paper. In the end Bellovin agrees with many
other authors that not the lack of authentica-
tion in DNS is the reason for the vulnerabilities
but the authentication method used by those
applications.

This problem is still present. Of course we
are now using ssh instead of rlogin, but we still
trust URLs in unauthenticated connections like
in our web browsers. Also, some services (e.g.,
online libraries) use now IP addresses instead of
host names for authentication. However, these
address based authentication mechanisms are
often circumvented using a public proxy server
in the proper IP address range.

3



3 DNSSEC

On the 28th IETF meeting in Houston in 1993
the starting shot for the organized work on
DNSSEC was given. The design team meet-
ing summary was later posted to the dns-
security@tis.com mailing list. Relating security
issues there were just two important require-
ments:

1. data integrity

2. data origin authentication

But there were some further important deci-
sions:

• no encryption: DNS data is public data

• no authentication of clients and servers

• backwards compatibility and co-existence
with DNS

These requirements were also the starting
point for our approach and, as we will explain in
Section 4.2, our approach complies with these
conditions better than DNSSEC. The DNSSEC
specification seems to approach a final state
now, more than ten years after the initial meet-
ing for DNSSEC.

3.1 Security Issues

There are a few papers that discuss the weak-
nesses of DNSSEC. For example, in April
2004 Derek Atkins and Rob Austein wrote an
Internet-Draft [2] that describes security prob-
lems of the current DNSSEC specification. The
main points of their critique are:

• DNSSEC servers are more effective as de-
nial of service amplifiers

• answer validation increases the resolvers
work load

• the trust model is almost totally hierarchi-
cal

• the implementation is very complex

• key roll-over at the root zone is really hard

• requirement of loose time synchronization
between server and resolver

• inherent complexity of the wildcard mecha-
nism complicates the authenticated denial
mechanism (i.e., the proof that a node with
a given name does not exist).

Besides those technical issues there are fur-
ther concerns that bar DNSSEC from being de-
ployed quickly as pointed out in the following
subsections.

3.2 Economic Aspects

A problem that was not mentioned yet is the
economic aspect of DNSSEC As a matter of
fact there are many more hostnames and hosts
with low security requirements than hosts with
high security requirements. If DNSSEC is used
to protect them, the cost to benefit ratio is not
satisfactory. DNSSEC can only be used to pro-
tect the whole zone and there is hierarchical
trust. That means that the higher zones up to
the root zone must be protected too. So this
is an approach that needs a consensus. We can
assume that users would not pay an additional
fee for security. The reason is that the majority
of them do not need additional security.

The DNSSEC benefits must justify large in-
vestments required for its roll out. This could
be reached by high consumer or industry de-
mand, but it seems that those players who need
the security did not wait ten years for DNSSEC.
They found other suitable solutions. In Section
3.3 and 4 we show how a higher level of security
could be reached without DNSSEC.

3.3 The competition

SSL is a tunneling protocol that provides au-
thenticated and encrypted sessions between

4



servers and clients. SSL starts with a hand-
shake that first establishes a TCP/IP connec-
tion. This means that SSL is located above
TCP in the protocol stack. It is not suit-
able for protecting UDP communication. The
participants are authenticated using public key
cryptography. Once authenticated, they se-
lect the strongest cryptographic algorithm sup-
ported by both. SSL can use a couple of so
called cipher suites, that include several check-
sum and encryption algorithms. SSL was devel-
oped by Netscape in the early 1990s. Version
1 was never released, a Version 2 client was in-
cluded in the Netscape Navigator 1.1 in 1994.
Version 3 is available since 1995.

At first glance, it is not evident that SSL
competes with DNSSEC, since SSL does not
check the integrity of DNS mappings. However,
SSL provides a method to verify the address
obtained from DNS for a given host. SSL can
tell the client that at least one trusted third
party thinks that the host reached using this
address is in fact authentic. This does not ex-
actly match the semantics of DNSSEC, but the
majority of the users or customers would not
worry about that or would even prefer the end-
to-end semantics of SSL.

SSL is used in exactly those applications
where DNSSEC would be most valuable. In
addition, SSL has several advantages over
DNSSEC:

• SSL is mature and is well investigated.

• There is a kind of brand awareness.
Browsers display a lock and the URL pre-
fix “https” for SSL connections, and users
have the idea that this indicates a secure
connection.

• SSL is supported by many software prod-
ucts like operating systems, web servers,
and client programs for different purposes.

• SSL requires little or no further develop-
ment.

• SSL provides additional services:
application-level authentication and
encryption.

In short, SSL is a serious competitor to
DNSSEC. It has taken the most valuable part
of the market. Thus the need and the demand
for DNSSEC has been reduced.

There are more DNSSEC competitors than
SSL, e.g., many public key infrastructures could
also be considered as competitors. All of them
rely on the existing DNS and, like SSL, perform
additional checks to authenticate their counter-
part.

4 The Proxy Approach

To address the weaknesses of DNSSEC, in par-
ticular, the roll-out issues of DNSSEC, we pro-
pose a new approach, that

• needs a small initial investment.

• is evolutional, i.e., is based on existing
technologies (BIND, SSL).

• does not touch todays stub resolvers, i.e.
does not demand client updates.

• permits a simple implementation.

• provides a simple key roll-over.

• does not increase the resolver’s workload.

• uses the existing SSL CA infrastructure.

• provides a simple online update mecha-
nism for DHCP users.

• provides a simple heuristical denial mech-
anism (to witness that there is no entry
matching on the given query)

The basic ideas of our proposal are presented
in the following subsections.

5



4.1 Extending DNS

An easy way of enhancing the integrity of the
DNS service is to add new resource record
(RR) types and to use them for authenticated
mappings. In the past, adding new RR types
was difficult because it required changes to the
server software3. Deployment of new server
software is expensive and takes some time. It
might be reasonable to change the software of
an authorative name server in order to provide
new security features for this zone. However,
it does not seem reasonable to expect that the
software of all DNS servers and clients will be
changed if only a small fraction of users wants
to add new security features.

If we want to include new RR types in or-
der to enhance the integrity of DNS entries,
we must make sure that all participants that
are not aware of these records can deal with
them transparently. BIND is the most fre-
quently used DNS server implementation [6].
Since version 9.1, BIND includes experimental
support for the transparent processing of un-
known RR types without any additional recom-
pilation. Our DNS security extension is based
on this feature.

4.2 Owner-signed Resource Records

The most important problem of DNS RRs is,
that they are not authenticated, i.e., do not
have a signature. For example, if the CNAME
RR would be replaced by an authenticated RR,
let us call it SEC CNAME, it would be ex-
tremely difficult for an adversary to forge such a
RR—even if the communication between DNS
servers is not protected.

A resolver with high security requirements
could always ask for authenticated, i.e., signed,
resource records. The signature would be cre-
ated by the owner of the mapping. It is neces-
sary to validate the certificate of the owner with
help of a trusted third party, i.e., a certification

3At least to relink or recompile.

authority. It is no longer necessary to trust all
DNS servers because a client can verify an DNS
entry owned by a zone A even if it was received
from a DNS server of another zone B.

In our approach we plan to add signed entries
for the following important DNS RR types: A,
NS, PTR, CNAME, MX, AAAA and later also
SOA.

Our approach fulfills the two major require-
ments mentioned in Section 3. The remaining
three conditions are also fulfilled. Remarkable
is, that our approach meets the 2nd requirement
in a better manner than DNSSEC does. The
owner of a DNS entry is the entity that up-
dates the record on the DNS server, not the
server itself. When using DNSSEC, the zone
administrator signs the zone data, although he
did not necessarily create the entries, so this is
not a real data origin authentication. In our
approach we want the data to be signed be the
entity that is responsible for it.

Determining the origin of a DNS entry is a
new problem. To verify a signature one must
find the certificate of the owner of the signed
record. A simple solution could be that the
owner is the entity, that owns a certificate
containing a distinguished name that exactly
matches the DNS name of the signed record.
This approach is currently used by many web
browsers to use https.

Example: The connection between a
client and the host www.hsbcprivatebank.com
is protected via HTTPS. The distin-
guished name of the SSL certificate is
“www.hsbcprivatebank.com”. The web
browser accepts this certificate because the
name of the host and the name in the certificate
match. At the same time this certificate can
be used to protect the integrity of the DNS
mapping. This would not cause any additional
cost because the certificate is needed anyway.

An important difference between our ap-
proach compared to DNSSEC is that the num-
ber of certificates and signatures in the sys-
tem depends on the number of RR with high

6



security requirements. In DNSSEC there is
one key pair per zone and each entry in the
zone is signed. Our approach needs a certifi-
cate for each host with high security require-
ments. Only the entries of these hosts are
signed. We expect that the number of signa-
tures is much smaller in our approach and so
there is a reduced demand for network band-
width and memory.

To enable the resolver to verify a signed en-
try, the certificate of the signer must be sent as
a kind of glue record. Today, the glue mecha-
nism is used if a subzone is delegated to another
name server and it is obvious that the resolver
needs the IP of this server. This glue mecha-
nism is also quite useful in our case, but there
is a trade-off that needs further examination.
A certificate can be quite large in comparison
to a simple A RR. If the certificate is sent each
time a resolver queries for a signed entry, this
mechanism could be a denial of service ampli-
fier. It might be better to let resolvers aggres-
sively cache certificates instead.

4.3 Using SSL

Currently, we are using OpenSSL [1] to create
and verify signatures. When a new secure RR
is uploaded to the server the whole “insecure”
entry is signed and inserted into the RDATA
field of the new RR. The new record gets the
original name, class and TTL. The type we are
using in our prototype is from the private use
realm as mentioned in [5]. The signature was
created using the rsautl tool that comes with
OpenSSL4. The certificate of the signer is not
included in the signature. The original content
is not encrypted.

If a secure RR has to be verified, OpenSSL
needs the certificate of the signer, the signed
RR and the certificate of the CA that signed
the certificate. How the certificate can be ac-
quired has been discussed in section 4.2. The

4S/MIME can also create signatures, but because of
the encoding the signed message is much larger.

CA certificate can be stored in a certain direc-
tory like https-aware Internet browsers usually
do.

4.4 Online Update

Since the DNS server is not forced to sign en-
tries, it does not need a private key for online
operations. The owners of DNS entries have to
supply signed entries. Sometimes these owners
are forced to update DNS entries very often,
e.g., if they are using DHCP. Such users need
an mechanism to update signed DNS entries.
There are two possibilities:

• The DHCP server can use or provide a ser-
vice to sign entries on demand, or

• The DHCP server can select new signed
entries from a pool of presigned ones.

The examination of these online update mech-
anisms is going to be documented in a future
publication.

4.5 Denial of authenticated entries

If a resolver tries to get a signed DNS entry, the
operation may fail if no such entry is available.
The problem is to determine whether the au-
thorative DNS server does not support secure
entries or some adversary tries to prevent the
resolver from accessing it.

In this case the resolver tries to find out
whether the owner of the entry it looks for has
published a certificate for use in DNS or not.
These certificates may be published using ser-
vices like HTTP or NEWS but also using a
special DNS zone. If the resolver is able to find
a certificate and the authorative name server
negates its existence, the name server might not
be authentic. If the resolver is not able to find
an authorative name server, a denial of service
attack is most likely. If no certificate is found,
it must be assumed that the owner is unable to
supply secure DNS entries.

7



4.6 Stub Resolvers

In many modern operating systems the DNS
resolver is just a set of library routines like
gethostbyname(const char *name) or gethost-
byaddr(const char *ip) for reverse lookup.
They are compiled into programs like mozilla
or telnet. They are not even separate processes.
Their functionality is restricted to sending re-
quests, waiting for an answer and retry the
query, if no answer has been received. Most
of the work of finding an entry to the request
is left to the server. Therefore the resolver per-
forms a recursive query to the first name server
(Figure 1). This server performs iterative non-
recursive queries to other name servers.

This simple principle helps to keep the re-
solvers workload as low as possible. If the re-
solvers would have to evaluate certificates with
cryptographic operations the whole stub re-
solver concept would be thrown overboard. But
as the nearest DNS server can do the work of
resolving DNS requests, it can also check their
signatures. To permit this simplification, we as-
sume that the client or stub resolver trusts the
local DNS server and the connection between
both is secure because it is, e.g., within an en-
terprise or virtual private network.

Figure 1: recursive resolution of local DNS
server

4.7 Architecture and Algorithm

Our implementation idea makes the following
assumptions:

1. All involved DNS servers can deal with un-
known RR types transparently.

2. There is either a trusted connection to the
local DNS server or certificates and signa-
tures of secure DNS entries can be checked
on the client’s machine.

3. It is possible to find out whether a server
supports our DNS extensions or not by
looking for it’s certificate(s) using external
services like NEWS or HTTP is available.
Another DNS zone would also be suitable.

The technical features of our approach are as
follows:

• The stub resolver implementation is not
touched.

• The DNS server implementation is not
touched as long as requirement 1 holds
(which is the case for the current BIND
implementation).

• OpenSSL or another SSL implementation
is used.

Further properties are:

• The DNS entry owner decides whether a
secure entry is needed or not.

• The DNS client decides for which zones
resp. hosts he only accepts secure, i.e., au-
thenticated entries.

• The authentication is done by a proxy on
a trusted server or on the user’s machine.
Of course, this will increase the workload
on this machine.

The system works as follows (Figure 2): The
stub resolver sends its requests to the DNS

8



Figure 2: authentication via proxy

proxy. The proxy decides whether the re-
quested entry needs authentication. For this
purpose, it has a user supplied policy, e.g., in
form of a list of zones or hosts with high secu-
rity requirements. This list might for example
contain the online banking server of the user.
If the entry needs authentication, the proxy re-
places the request type by the corresponding
authenticated type, otherwise the original re-
quest is forwarded to the name server. After
the name server answers to an “authenticated”
DNS request, the proxy evaluates the signature
and the certificate. It would be an advantage if
the proxy maintained a certificate cache. If the
entry is authentic, it sends a non-signed answer
back to the stub resolver. Furthermore, the ad-
ditional and authorative sections of the DNS
message are forwarded to the stub resolver in
the same manner. If the name server fails to
find a signed entry, the proxy tries to find the
certificate of the entry owner. This could be
done with new special DNS zones. The autho-
rative name server of such a zone provides cer-
tificates for all DNS owners that provide secure
entries.

Requirement 2 of section 4.7 gives three pos-
sibilities for the placement of the proxy: 1. If
there is a secure connection between the local
DNS server, the proxy can be placed there. 2. If
it is acceptable to have an increased workload
on the resolver’s machine, the proxy can be
placed locally like depicted in Figure 2. 3. The
proxy can be placed on any trusted host within
a VPN.

5 Conclusion

We presented a new kind of DNS security ex-
tension that satisfy the original requirements
for DNSSEC. The main competitor to our ap-
proach is DNSSEC. There are two kinds of
advantages of our approach in comparison to
DNSSEC.

Economical advantages: Our approach needs
no further financial investment of DNS server
providers. The only prerequisite is that the
DNS server is able to deal with unknown RR
types transparently. The roll-out of the se-
curity extension mechanism must be done by
users that want to provide secure DNS map-
pings and those who want to use secure map-
pings. These are the people that really want the
new features. Everybody else is not involved.
In comparison with DNSSEC, this reduces and
redistributes the overall costs.

Technical advantages: The size of the DNS
database is inflated by DNSSEC. Our approach
only increases the size of DNS entries of those
hosts that really need the enhanced security.
This is expected to be just a small fraction of
the hosts listed in DNS. Hence, the impact on
the zone file size is expected to be smaller. The
workload of the resolver is not increased and
the resolver implementation is not touched at
all. Hence, do not need to be upgraded. There
is no hierarchical trust model except possibly
for the CA hierarchy. Our trust model provides
end-to-end semantics with trusted third party
involved. The implementation of our approach
is very simple too. A resolver has to contact
a proxy, that cares for the authentication or, if
no authentication is needed, just forwards DNS
requests. The key roll-over is very simple, since
the owners signs their entries and they are able
to update their entries in a simple manner. The
denial mechanism (i.e., proof that a host name
does not exist) is just heuristical and therefore
very simple. The disadvantage is, that there is
no proof for the existence or non-existence of a
signed entry.

9



6 Future Work

We will investigate the following issues more
closely: (1) heuristical denial mechanisms, (2)
algorithms for determining the owner of a
RR, (3) how delegations can be protected,
(4) whether certificates should be sent as glue
records or caching is a better strategy, and (5)
the expected percentage of secure entries in
DNS zone files.

References

[1] The OpenSSL Project.
http://www.openssl.org/, 2004.

[2] D. Atkins and R. Austein. Threat Analy-
sis of the Domain Name System. Network
Working Group, 2004.

[3] S. M. Bellovin. Using the Domain Name
System for system break-ins. In Proceedings
of the fifth Usenix UNIX Security Sympo-
sium, pages 199–208, Salt Lake City, UT,
June 1995.

[4] CAIDA. Nameserver DoS Attack October
2002. http://www.caida.org/projects/dns-
analysis/oct02dos.xml, 2003.

[5] D. E. Eastlake, E. Brunner-Williams, and
B. Manning. Domain Name System (DNS)
IANA Considerations. RFC 2929, 2000.

[6] Internet Systems Consortium.
ISC Internet Domain Survey.
http://www.isc.org/index.pl?/ops/ds/,
2004.

[7] C. Irving. The Achilles Heal of DNS. SANS
Institute, 2001.

A Glossary

A Record The resource record type A assigns
an IP Version 4 address to a domain name.

BIND Berkeley Internet Name Daemon. The
most common DNS software of the Inter-
net.

CA Certification Authority

Certificate A trusted third party, i.e., a CA,
confirms that a public key belongs to a per-
son or organization by creating a certificate
containing the public key, the name and
some management information like expira-
tion date and serial number. The trusted
third party signs this structure.

CNAME Record Canonical Name Record.
Represents an alias of a DNS name.

MX Record Mail Exchange Record. Repre-
sents a mail route for a domain name.

NS Record Name Server Record. An NS
record declares that a given zone is served
by a given name server.

PTR Record Pointer Record. Used to asso-
ciate an IP address with a DNS name. This
RR type is needed for reverse lookups.

RR The Resource Record is the basic unit of
data in DNS. It contains five fields: Name
(like www.cnn.com), TTL, CLASS (Inter-
net, Hesiod, or Chaos), TYPE (A, MX, NS
, ...) and the RData that contains the data
of the record. The format of RDATA de-
pends on the TYPE of the record.

SOA Record The Start Of Authority record
is the first record in a zone file. It con-
tains some information about the zone and
tells the server that it is authorative for
this zone, i.e., the zone contains it’s own
native data.

TTL Time To Live

10


