
DXQ: A Distributed XQuery Scripting Language

Mary Fernández
AT&T Labs Research

mff@research.att.com

Trevor Jim
AT&T Labs Research

trevor@research.att.com

Kristi Morton
Univ. of Texas Austin

kmorton@cs.utexas.edu
Nicola Onose

UCSD
nicola@cs.ucsd.edu

Jérôme Siméon
IBM Watson Research

simeon@us.ibm.com

ABSTRACT
We present DXQ, an extension of XQuery to support the ef-
fective and efficient development of distributed XML appli-
cations. A DXQ program can invoke remote DXQ programs
both synchronously and asynchronously and can dynami-
cally ship DXQ code to execute at remote servers. We illus-
trate the power of the language with two distributed applica-
tions: the resolution algorithm of the Domain Name System
(DNS) and the Narada overlay-network protocol. Our im-
plementation permits concurrent evaluation of DXQ expres-
sions at each server and can produce results extensionally
(as XML values) or intensionally (as DXQ expressions).

1. INTRODUCTION
Our goal is to support the effective and efficient develop-

ment of distributed applications based on XML. We present
DXQ, an extension of XQuery with distributed program-
ming features. The declarative nature of XQuery, combined
with its support for XML processing, makes it well suited
for rapid development of complex distributed systems, in
particular Web services, peer-to-peer applications, and dis-
tributed resource-management (DRM) applications 1.

We have been experimenting with DXQ on several appli-
cations, including the resolution algorithm of the Domain
Name System (DNS) and the Narada overlay-network pro-
tocol [4], which are representative of more complex DRM
applications [9, 17] and of other overlay networks. Both ap-
plications raise significant challenges in terms of distribution
and data processing.

The Domain Name System (DNS) is a prototypical DRM
system. DNS provides the basic infrastructure for resource
management in the Internet: name resolution (mapping a
hostname to its IP address) and service location (e.g., de-
termining an organization’s mail server). DNS was deployed
in the early Internet and has grown with it. Today, it com-
prises a global network of servers, providing over 400 million

1Not to be confused with the more common acronym for
digital rights management.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

address records [21], and handling more than 100 million
queries per day at over 100 physical root servers [25]. Be-
cause of its importance, DNS has been well studied and is a
benchmark for the DRM problem. There are many efforts
to improve on its performance and features, and remedy its
deficiencies [5, 16, 18]. We use DNS as our running example.

Narada is a mesh overlay network in which nodes can
dynamically enter and leave the mesh overlay and which
provides infrastructure for routing and multicast. Overlay
networks like Narada are interesting test cases for DXQ, be-
cause they require periodic, asynchronous messages to main-
tain protocol state, and the state includes membership and
routing tables that can be naturally described and manipu-
lated in XML. Space constraints prevent us from discussing
the details of our Narada implementation, but more infor-
mation is available from our Web site.

Implementing DRM protocols is non-trivial. Resource
descriptions are typically distributed, because they are co-
located with the resources that they describe, and volatile,
because they include physical parameters that vary over
time. More significantly, distributed participants control
their own resources and have their own resource manage-
ment policies. This means no universal policy, or program,
can be applied by any one participant to manage a dis-
tributed resource. Instead, multiple systems participate in a
protocol, each applying their own local policy. Participants
and their resources tend to be organized hierarchically, and
the set of participants relevant to a particular task may be
dynamic, that is, dependent on the other participants and
the accessed resources.

Most network applications and protocols are stateful, so
DXQ includes the update and mutable-variable features of
XQueryP [3]. In addition, DXQ supports synchronous and
asynchronous invocations of remote DXQ programs, and the
ability to ship DXQ code to remote locations. Our imple-
mentation permits concurrent evaluation of DXQ expres-
sions at each server and can produce results extensionally
(as XML values) or intensionally (as DXQ expressions).

A DXQ server is a complete query processor for XML, and
can act as a client as well as a server. It exports a module
written in DXQ, and accepts arbitrary DXQ queries that can
invoke the server’s exported functions and even cause the
server to query other servers. For example, a DNS resolver
works by making a series of database queries, starting at a
root name server, and following delegations until reaching
a name server that has the final answer (a hostname’s IP
address). This series of queries is naturally expressed as a
single DXQ query, where following a delegation corresponds

1

to a join of remote databases, computed at the resolver (the
client). In contrast, a multicast can be expressed as a DXQ
query that causes the server to forward messages to all child
servers in the multicast tree, on behalf of the original client.

DXQ is implemented and is publicly available as part of
the Galax XQuery processor. A demonstration of DXQ also
appears in the SIGMOD 2007 Demonstrations program [6].
More information about the DXQ project can be found on
line at http://db.ucsd.edu/dxq/.

We introduce DXQ extensions to XQuery in Section 2, us-
ing DNS resolution as a motivating example. In Section 3,
we give further examples of how DXQ’s features are needed
to handle real distributed protocols. Section 4 describes our
implementation, and Section 5 presents related work. We
conclude in Section 6 by identifying open design and imple-
mentation problems and consider opportunities for DXQ in
other application domains.

2. THE DXQ LANGUAGE
The DXQ language includes all of XQueryP [3] and ex-

tends it with the features summarized in Figure 1.
First, DXQ distinguishes a module’s interface from its im-

plementation. In XQuery, these are inseparable, and the im-
plementation of an imported module is always visible within
the importing module. In DXQ, multiple servers can export
the same module interface, but each provides its own, po-
tentially unique implementation. The syntax for module
interfaces is based on a simplified version of the XQuery
prolog without setters, with only variable and function sig-
nature declarations, and that permits recursive imports of
other module interfaces. In our DNS example, each DXQ
server exports the following interface:

interface namespace Server = "http://www.dns.org/Server";
declare function Server:resources();
declare function Server:multicast($msg);

The resources() function returns a server’s DNS resource
records, and the multicast() function sends a multicast
message to child nameservers contained in a server’s delega-
tion hierarchy.

Figure 2 contains a module that implements the DNS
server interface. The server that exports this module is the
“start of authority” nameserver for the research.att.com do-
main and is named ns.research.att.com, as represented by
the soa element. The definition of resources() includes
the hostname and IP address for hosts in that domain (the
a elements) as well as the hostname and IP address for the
root nameserver known as “.” name server (the ns element).
(Here, resources() returns literal XML values, but, in prac-
tice, it might access resource records stored in a database.)

Second, DXQ adds an import-interface declaration to
the query prolog, which permits a client query to refer to
functions in a module exported by a DXQ server. Figure 3
contains a client program that implements the DNS resolver
algorithm. It imports the DNS server interface on Line 1,
that it, it associates the namespace prefix Server with the
module interface in http://www.dns.org/Server.

Third, DXQ adds a let-server-implement expression,
which dynamically asserts that a DXQ server at a particular
URI implements an imported interface. Line 5 of Figure 3
asserts that the server at the URI defined by $x implements
the module interface Server, and that this implementation
can be addressed with the prefix S. In particular, the prefix S

module namespace Server implements "http://www.dns.org/Server";
declare function Server:resources() {

<rr>
<soa dom="research.att.com"

serv="ns.research.att.com"/>
<ns dom="." serv="a.root-servers.net"/>

<!-- Other hosts in research.att.com -->

</rr>
};
(: Multicast defined in Figure 5 :)

Figure 2: Resource records for research.att.com

1. import interface Server = "http://www.dns.org/Server";
2. import module U = "DNSUtility";
3. declare function Resolver:lookup($x,$n) {
4. <rr>{
5. let server S implement Server at $x return
6. let $rr := from server S return S:resources()
7. return
8. $rr/a[@host=$n],
9. (for $ns in $rr/ns, $a in $rr/a

10. where $ns/@serv=$a/@host
11. and fn:not($ns/@dom = ".")
12. and U:hostname-lt($ns/@dom,$n)
13. return Resolver:lookup($a/@addr, $n)/a)
14. }</rr>
15. };

Figure 3: Core DNS resolver in DXQ

associates a server location with a module interface and im-
plementation. Using namespace prefixes to refer to servers
further overloads the semantics of namespace prefixes, but
permits re-use of the XQuery function call syntax to call
remote functions.

Lastly, DXQ includes two remote-evaluation expressions,
from-server-return and at-server-do, which evaluate an
expression at a DXQ server synchronously and asynchronously,
respectively. The first argument of each expression is the
namespace prefix of a server bound by an enclosing let-

server-implement expression. The second argument is an
expression that is evaluated by the given DXQ server. A
remote expression may contain calls to remote functions,
whose implementations are determined by an enclosing let-

server-implement expression.
The language extension is small, but provides a powerful

mechanism for distributed XML programming. For exam-
ple, the core DNS resolver algorithm in Figure 3 is imple-
mented by the ten-line, recursive lookup function. Uses of
the DXQ extensions are indicated by the italicized code on
Lines 1, 5, and 6. The lookup function takes two argu-
ments: a hostname $n to resolve, and the server address
$x at which to initiate resolution. The algorithm con-
tains one from-server-return expression (Line 6), which
calls the remote function S:resources. This call returns all
the server’s resource records to the resolver. The resolver
computes the result, which includes all address records for
host $n defined at the server S (Line 8), and the address
records for $n defined by name servers known to server S

(Lines 9–13). The latter set is computed by calling lookup

recursively (Line 13) for each name server known to server
S whose domain includes $n (Lines 11–12). The function
U:hostname-lt call on Line 12 checks lexicographically that
the hostname $n is contained in a domain name, forcing the
recursion down the delegation of nameservers. This imple-

2

Interface ::= interface namespace NCName = URILiteral ; InterfaceProlog

Module ::= module namespace NCName = URILiteral (implements URILiteral)?; ModuleProlog

InterfaceImport ::= import interface namespace NCName = URILiteral

Expr ::= · · ·
| let server NCName implement NCName at Expr return Expr

| from server NCName return Expr

| at server NCName do Expr

Figure 1: DXQ grammar extensions

1. declare variable $cache := <cache/>;
2. declare updating function Resolver:lookup($x,$n) {
3. <rr>{
4. let $ac := $cache/entry/a[@host=$n] return
5. if (empty ($ac)) then {
6. let server S implement Server at $x return
7. let $rr := S:resources()
8. let $ans := $rr/a[@host=$n]
9. return {
10. if (empty($ans)) then ()
11. else
12. do insert
13. <entry serv="$x">{$ans}</entry>
14. into $cache ;
15. ($ans,
16. ... Lines 9-13 in Figure 2...) }
17. else $ac
18. }</rr>
19. };

Figure 4: A caching resolver, using updates

mentation returns all address resolutions, although another
formulation might return only the first match found.

Calling one remote function synchronously, as on Line 6,
is a common idiom and is abbreviated by the function call
itself. For example, in Figure 3, the following line:

let $rr := from server S return S:resources()

can be replaced by let $rr := S:resources(). The re-
maining examples use this abbreviated form.

3. USING DXQ IN PRACTICE
The DNS resolver in Figure 3 is implemented almost com-

pletely in XQuery proper and requires only modest exten-
sions to express the distributed computation. Implementing
more complex protocols, like the Narada overlay network,
requires periodic, asynchronous messages and updates to
maintain protocol state. The remaining examples illustrate
how those features can be implemented in DXQ.

3.1 Maintaining state
Most DRM protocols must maintain and update state,

e.g., caches, sequence numbers, extensional databases, there-
fore side effects are necessary to implement these protocols
completely and transparently. For example, to avoid un-
necessary communication with a DNS server, the variant of
lookup in Figure 4 maintains a cache of hostname-address
bindings. Before contacting a name server for its address
records, the local cache is checked (Line 4). If no cache
exists for the given hostname, other name servers are con-
tacted (Line 7) and if the result is non-empty, the local cache
is updated (Lines 12–14). The rest of the algorithm remains
unchanged.

1. declare function Server:multicast($msg) {
2. { local:deliver($msg);
3. let $soa := Server:resources()/soa/@dom return
4. if ($soa) then {
5. for $ns in Server:resources()/ns,
6. $a in Server:resources()/a
7. where $ns/@serv=$a/@host
8. and U:hostname-lt($soa,$ns/@dom)
9. return

10. let server S implement Server at $a/@address return
11. at server S do S:multicast($msg)
12. } else ()
13. }
14. };

Figure 5: Multicast, using asynchrony

Caching policies could be transparent to the user, i.e., the
DXQ compiler might be able to derive a caching variant of
the DNS resolver automatically. In DRM applications, how-
ever, caching policies can be quite complex and depend on,
for example, the information provider and other external pa-
rameters, so the ability to implement such policies explicitly
in the same framework is powerful.

3.2 Asynchrony
Another feature of DRM protocols is asynchronous, peri-

odic communication. In the example of Narada, each server
periodically sends asynchronous messages to their neighbors
reporting their current “view” of the overlay mesh. Multi-
cast services also depend on asynchronous communication.
Figure 5 contains the DXQ code for multicast built on top of
DNS. Upon receiving a multicast message, a server calls its
own server-specific delivery function (Line 2). If the server is
the start of authority for some domain (Lines 3–4), it com-
putes the set of nameservers that are contained within its
domain (Lines 5–8), then sends an asynchronous multicast
message (Line 11) to each such nameserver. This example
illustrates the simplicity of implementing a distributed ser-
vice in DXQ.

Many protocols have several periodic events that run si-
multaneously. For example, to implement the Narada pro-
tocol, the main server function makes one asynchronous call
to itself to start each periodic function. The following code
snippet illustrates this idiom.

let server Self implement Narada at U:self()

return {

at server Self do ...periodic function 1...;

at server Self do ...periodic function 2...;

}

The utility function self() returns the URI of the local
server. When a program sends an asynchronous message to

3

Closure/XML XML Data

Server A Server BExpr
User 2

3
4

1

Figure 6: DXQ Servers

its own server, a new thread is created in which the body of
the at-server-do expression is evaluated.

4. DXQ IMPLEMENTATION
A DXQ server exports a module of DXQ functions that

may be called remotely by a client application or by an-
other DXQ server. In addition, a DXQ server can evaluate
any DXQ expression submitted by a requester, which may
include calls to the server’s exported functions.

Figure 6 depicts the interaction of two DXQ servers, which
can be generalized to any number. Server A accepts a DXQ
expression from a user application (Step 1), compiles the
expression given the server’s module context, evaluates the
resulting expression, and returns an XML value (Step 4).
To compute the result may require that some fragment of
the compiled expression be evaluated by Server B. In this
case, Server A constructs a closure [2], which encapsulates
the expression with the local context, e.g., dynamic data
and function definitions, that is necessary to evaluate the
expression remotely. The closure is serialized in XML and
shipped to Server B (Step 2).

In response to Server A’s request, Server B server eval-
uates the expression and, most commonly, returns an ex-
tensional XML value. In addition, Server B may return an
intensional expression [14] that the requester may evaluate
to compute the result itself (Step 3). For example, assume
that Server B implements the module in Figure 2 and it
receives the following query from Server A:

Server:resources()/a[@host="192.20.3.54"]

The extensional result is:

The following expression corresponds to a valid intensional
result, which includes Server B’s resource records followed
by the path expression to select the host:

(<rr>
<soa dom="research.att.com"

serv="ns.research.att.com"/>

<ns dom="." serv="a.root-servers.net"/>

</rr>)/a[@host="192.20.3.54"]

Intensional answers have (at least) two uses. First, they
may require less work to compute than an equivalent exten-
sional answer, and so they permit a server to shift work to
the client, for example if the server is overloaded. Second,
they can be used to collapse a distributed recursive pro-
gram to a single site. Consider a function A() exported by
Server A, which calls a function B() exported by Server B,
which in turn calls A() at Server A. If Server B returns an
intensional answer to Server A instead of invoking A(), the
loop will be collapsed to Server A, which can then evaluate
it more efficiently.

6. from server S return S:resources()/a[@host=$n],
7. for $a1 in from server S return {
8. for $ns in S:resources()/ns,
9. $a2 in S:resources()/a,

10. where $ns/@serv=$a2/@host
11. and fn:not($ns/@dom = ".")
12. and U:hostname-lt($ns/@dom,$n)
13. return $a2
14. }
15. return Resolver:lookup($a1/@addr, $n)/a

Figure 7: Alternative resolver

Closure/XML Remote planLocal plan

Export

Optimizer Evaluation
(3) Selection

Code

(4) (5)
Analysis

(2)

Front End (1)

DXQ Server

Peer DXQ Server

Import
Server Context

User Query

Figure 8: DXQ Server Architecture

4.1 Distributed Optimization
DXQ’s ability to move arbitrary expressions between servers

enables some interesting distributed query optimizations. In
a network setting, the most important concerns are to re-
duce the number of messages exchanged by servers and to
reduce the amount of data moved between servers.

For example, if the query in Figure 3 is evaluated as writ-
ten, the resolver will ask for and receive all of a name server’s
resource records, even though most are irrelevant to looking
up a specific domain name. The alternate query of Figure 7
indicates a more efficient plan for computing the same re-
sult: A remote server is contacted twice, once to return just
the address records for the hostname (Line 6), and once to
return the addresses of name servers that can resolve the
hostname (Lines 7–14). As in Figure 3, Lines 11–12 select
nameservers whose domains contain the hostname $n. In
this variant, the server S does some of the work that was
done by the resolver in the first algorithm (selecting the ad-
dress records for the hostname and computing the addresses
of name servers that can resolve the hostname).

A key technical problem in the implementation of DXQ is
to rewrite an expression, whether a user’s query or a remote
closure, into an extensionally equivalent expression that is
more efficient. Optimizing DXQ is challenging: optimization
techniques for XQuery are still nascent, and optimization of
distributed queries is a notoriously hard problem. Before de-
scribing the heuristic optimizations currently implemented,
we describe the architecture in which DXQ is implemented.

Each DXQ server contains a complete, threaded Galax
XQuery processor. Figure 8 depicts the engine’s processor.
Upon receiving an expression to evaluate, i.e., a user query,
a remote closure, or an expression whose target is the server
itself, the server creates a new thread in which to evaluate
the expression. The front end compiles the module exported
by the server and user’s queries into algebraic query plans [7,
20], which is the program representation exchanged by DXQ
servers in a closure. When a server receives a user query (or
a remote closure), it compiles the query into an algebraic

4

plan (or respectively, extracts the algebraic plan from the
remote closure), then analyzes the plan with respect to the
server’s module context (Steps 1-2). The resulting plan may
contain a fragment that will be evaluated remotely. The op-
timization phase applies heuristic rules to rewrite the plan,
possibly resulting in a plan in which a larger fragment is
evaluated remotely (Step 3). Code selection selects physi-
cal operators for each algebraic operator in a plan; for the
remote-evaluation operator, the remote plan is exported into
XML as the code fragment of the closure (Step 4). Lastly,
the physical plan is evaluated. When a remote-evaluation
operator is evaluated, the data fragment of the closure is
computed (Step 5), and the complete closure is shipped to
a peer server.

Our current optimizer pushes selections through the remote-
evaluation operator, including value predicates and path ex-
pressions; pushes joins through a remote evaluation when
the data for both branches of the join are at the same lo-
cation; and merges sequential remote-evaluation expressions
to the same location. These simple rules permit the query in
Figure 3 to be transformed into the query in Figure 7. More
sophisticated techniques are the subject of current and fu-
ture work.

5. RELATED RESEARCH
Systems like Astrolabe [23] demonstrate that adding pro-

grammability to a hierarchical database like DNS greatly
increases its utility for DRM applications. Astrolabe cre-
ates a hierarchy of zones, each of which exports a database
that can be accessed using SQL. Furthermore, a zone’s
database can be defined by an aggregate SQL query over the
databases of child zones, and database contents are updated
automatically as state changes. Services like multicast are
built on top of this infrastructure by adding a separate agent
in each zone that consults the local database and commu-
nicates with agents in other zones. We have an integrated
approach that allows us to write resolvers and services like
multicast entirely within DXQ. This has two potential ad-
vantages over systems that simply expose a database API
as a library. First, services are easier to write because DXQ
is a high-level language and database optimizations can be
applied automatically across distributed servers. Second, it
is not necessary to pre-deploy agents in the network; for ex-
ample, in DXQ, multicast can be written at the client, and
the necessary code for implementing the multicast migrates
as necessary through the network. This allows for easy ex-
perimentation, while still allowing code to be pre-deployed
for efficiency if desired.

There are several other DRM systems based on database
languages. DXQ’s remote execution operator was inspired
by Jim’s previous work on using distributed databases for se-
curity policies [10, 12] and SD3 [11]. Like SD3 and d3log [12],
DXQ supports both extensional and intensional answers to
distributed queries. Intensional answers permit DXQ to
detect and recover from (potentially infinite) recursion be-
tween multiple servers.

Sophia [24] is an “information plane” for networked sys-
tems. Its query language is a logic programming language
that extends Prolog. Like DXQ, Sophia provides an ex-
plicit remote evaluation expression, whose target may be
computed dynamically; loadable server modules; and dis-
tributed query optimization via query shipping. Sophia in-
cludes continuous updates, but lacks asynchronous execu-

tion and XML support. NDlog [13] and SeNDlog [1] are
distributed variants of Datalog that have been used for mon-
itoring network properties like connectivity and for imple-
menting distributed security policies. Even though the mo-
tivation for these is similar to that of DXQ, the use of a
rule-based, logic languages limits their applicability to large
scale applications. Implementation of many features neces-
sary in distributed protocols is convoluted: updating coun-
ters and protocol state, and APIs to host languages are cum-
bersome, and the absence of modularity makes programs ex-
ceeding fifty or more rules hard to understand and modify.
Our goal is for DXQ to hit a “sweet spot” between general-
purpose programming languages and telegraphic rule-based
languages.

XL [8] was the first XML-based scripting language de-
signed to implement Web services. XL inspired many of the
features in XQueryP, such as XML updates and invoking
the operations of remote Web services. Moreover, XL has
explicit primitives for parallelism. DXQ expands upon these
features by shipping arbitrary query plans to remote servers,
generalizing the invocation of WSDL operations in XL and
XButler [15]. XQueryD [19] supports remote execution of
XQuery via an expression like DXQ’s from-server, and
adds exception handling, but lacks DXQ’s updates, asyn-
chronous evaluation, and the ability to declare interfaces
for servers and dynamically bind implementations to inter-
faces. XRPC [26] adds distributed queries and distributed
updates to XQuery, and provides a “loop-lifting” optimiza-
tion for for expressions whose bodies make remote function
calls. The for-loop bodies are shipped remotely in a bulk
RPC, but XRPC does not optimize across the function-call
itself. Distributed XML-Query [22] is a protocol for ship-
ping XQuery expressions and XML results between XQuery
servers, but provides none of the distributed linguistic fea-
tures or optimization capabilities of DXQ.

6. DISCUSSION
We are pleasantly surprised by the simplicity, utility, and

expressive power of DXQ, are excited by its potential ap-
plications, and challenged by the problems to solve before
DXQ can be used by other XQuery users. We discuss several
problems and opportunities.

Writing and running DXQ programs is fun, but debugging
can be exasperating. To help us understand DXQ applica-
tions and to better explain DXQ’s functionality, we have
developed a GUI. DXQ servers report their existence and
summaries of messages to a central GUI server, which visu-
alizes the inter-server message traffic. Inter-server message
traffic helps us understand “who is talking to who about
what”, but doesn’t help us understand local state, that is
why we expose our graph-drawing API in DXQ so that ap-
plications can explicitly report state change. We find that
the simultaneous visualization of “fast” message traffic with
“slow” state changes helps us better understand and debug
DXQ programs.

DXQ is a concurrent programming language: The evalua-
tion of each synchronous or asynchronous remote expression
occurs in a separate thread. Concurrent access to shared
values, e.g., global variables in a server’s exported module,
must be protected by locks. DXQ provides functions for cre-
ating, locking, and unlocking mutexes, but the DXQ user is
responsible for applying the mutexes correctly. This solu-
tion permits us to prototype applications, but is untenable

5

in the long run as simple errors lead to deadlocks and race
conditions. Our next task is to investigate synchronization
models for DXQ.

One potential use of DXQ is as an implementation lan-
guage for Web services. In previous work [15], we described
how to expose an XQuery module as a Web service and
to import Web services, described in WSDL, into XQuery
programs. Inter-service communication, however, was re-
stricted to synchronous function calls. With DXQ, we can
support both synchronous and asynchronous messaging be-
tween Web services. More significantly, DXQ’s program-
ming model can generalize the Web-service interface, mak-
ing it more “transparent” by permitting evaluation of arbi-
trary expressions in addition to method calls. This capa-
bility could help address the performance problems of Web-
service implementations.

The interactions between a server’s evaluation policies and
the ability to ship arbitrary expressions and receive inten-
tional answers are subtle and potentially conflicting. For
example, one DXQ server may optimize a query, which re-
sults in shipping a “join” operator to another server, which
may decide that the “join” operator is too expensive and
return an intensional result.

One way in DXQ to account for a server’s evaluation poli-
cies or capabilities is to incorporate them into the cost model
of a cost-based optimizer. For example, a server that does
not permit evaluation of recursive functions shipped from
another server would export a cost model in which recur-
sive functions have an infinite cost. Similar techniques can
be used to prohibit clients from shipping “expensive” op-
erators, like joins. We look forward to working on these
challenging problems.

7. REFERENCES
[1] M. Abadi and B. T. Loo. Towards a declarative language

and system for secure networking. In NetDB ’07:
Proceedings of the 3rd International Workshop on
Networking meets Databases, 2007.

[2] A. W. Appel. Modern Compiler Implementation in
C/Java/ML. Cambridge University Press, 1998.

[3] D. Chamberlin, M. Carey, D. Florescu, D. Kossmann, and
J. Robie. XQueryP: Programming with XQuery. In
XIME-P 2006, Chicago, IL, USA, June 2006.

[4] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. IEEE Journal on Selected Areas in
Communication (JSAC), 20(8), 2002.

[5] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS
using a peer-to-peer lookup service. In 1st International
Workshop on Peer-to-Peer Systems (IPTPS), Mar. 2002.

[6] M. Fernández, T. Jim, K. Morton, N. Onose, , and
J. Siméon. Highly distributed XQuery with DXQ. In
Proceedings of ACM Conference on Management of Data
(SIGMOD), Demonstration Program., June 2007.

[7] M. Fernández, P. Michels, J. Siméon, and M. Stark. XQuery
streaming à la carte. In ICDE, Istanbul, Turkey, Mar. 2007.

[8] D. Florescu, A. Grünhagen, and D. Kossmann. XL: a
platform for web services. In CIDR, 2003.

[9] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Grimshaw,
B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam,
J. Treadwell, and J. V. Reich. The Open Grid Services
Architecture, version 1.5. Technical Report GFD.80, Global
Grid Forum, 2006.
http://www.ggf.org/documents/GFD.80.pdf.

[10] C. A. Gunter and T. Jim. Policy-directed certificate
retrieval. Software Practice and Experience,
30(15):1609–1640, 2000.

[11] T. Jim. SD3: A trust management system with certified
evaluation. In IEEE Symposium on Security and Privacy,
pages 106–115, 2001.

[12] T. Jim and D. Suciu. Dynamically distributed query
evaluation. In PODS, 2001.

[13] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative networking: language, execution and
optimization. In SIGMOD, pages 97–108, New York, NY,
USA, 2006. ACM Press.

[14] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F. D.
Ngoc. Exchanging intensional XML data. ACM Trans.
Database Syst., 30(1):1–40, 2005.

[15] N. Onose and J. Siméon. XQuery at your web service. In
Proceedings of International World Wide Web Conference,
pages 603–611, New York, NY, USA, 2004. ACM Press.

[16] K. Park, V. S. Pai, L. Peterson, and Z. Wang. CoDNS:
Improving DNS performance and reliability via cooperative
lookups. In Proceedings of the Sixth Symposium on
Operating Systems Design and Implementation (OSDI
’04), 2004.

[17] L. Peterson and J. Wroclawski. Overview of the GENI
architecture. Technical Report Design Document 06-11,
Global Environment for Network Innovations, 2006.
http://www.geni.net/GDD/GDD-06-11.pdf.

[18] V. Ramasubramanian and E. G. Sirer. The design and
implementation of a next generation name service for the
Internet. In Proceedings of SIGCOMM, Aug. 2004.

[19] C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed
XQuery. In Workshop on Information Integration on the
Web, pages 116–121, 2004.

[20] C. Re, J. Simeon, and M. Fernández. A complete and
efficient algebraic compiler for XQuery. In ICDE, Atlanta,
Georgia, Apr. 2006.

[21] Internet domain survey. http://www.isc.org/ops/ds/, July
2006.

[22] C. Thiemann, M. Schlenker, and T. Severiens. Proposed
specification of a distributed XML-query network, 2003.

[23] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system
monitoring, management, and data mining. ACM
Transactions on Computer Systems, 21(2):164–206, 2003.

[24] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: an
information plane for networked systems. SIGCOMM
Comput. Commun. Rev., 34(1):15–20, 2004.

[25] D. Wessels, M. Fomenkov, N. Brownlee, and K. Claffy.
Measurements and laboratory simulations of the upper
DNS hierarchy. In Passive and Active Network
Measurement Workshop (PAM), Apr. 2004.

[26] Y. Zhang and P. Boncz. Loop-lifted XQuery RPC with
deterministic updates. Draft manuscript, Centrum voor
Wiskunde en Informatica, Nov. 2006.

APPENDIX
A. ON-LINE DEMONSTRATION.

All DXQ examples in Section 2 are available in an on-line
demonstration at http://db.ucsd.edu/dxq/. The demon-
stration includes a graphical depiction of an example DNS
network. Manual playback of each example query illustrates
the communication patterns, with and without query opti-
mization, and displays the closures and XML values con-
tained in each message.

6

